論文の概要: Threat analysis and adversarial model for Smart Grids
- arxiv url: http://arxiv.org/abs/2406.11716v1
- Date: Mon, 17 Jun 2024 16:33:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 12:54:18.305332
- Title: Threat analysis and adversarial model for Smart Grids
- Title(参考訳): スマートグリッドの脅威解析と敵モデル
- Authors: Javier Sande Ríos, Jesús Canal Sánchez, Carmen Manzano Hernandez, Sergio Pastrana,
- Abstract要約: このスマートパワーグリッドのサイバードメインは、新たな脅威を開拓する。
規制機関、業界、アカデミーを含む様々な利害関係者は、サイバーリスクを緩和し軽減するためのセキュリティメカニズムの提供に取り組んでいる。
近年の研究では、グリッド実践者や学術専門家の間で、学術が提案する脅威の実現可能性と結果に関する合意の欠如が示されている。
これは、攻撃者の完全な能力と目標に基づいて脅威を評価しない、不適切なシミュレーションモデルが原因である。
- 参考スコア(独自算出の注目度): 1.7482569079741024
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The power grid is a critical infrastructure that allows for the efficient and robust generation, transmission, delivery and consumption of electricity. In the recent years, the physical components have been equipped with computing and network devices, which optimizes the operation and maintenance of the grid. The cyber domain of this smart power grid opens a new plethora of threats, which adds to classical threats on the physical domain. Accordingly, different stakeholders including regulation bodies, industry and academy, are making increasing efforts to provide security mechanisms to mitigate and reduce cyber-risks. Despite these efforts, there have been various cyberattacks that have affected the smart grid, leading in some cases to catastrophic consequences, showcasing that the industry might not be prepared for attacks from high profile adversaries. At the same time, recent work shows a lack of agreement among grid practitioners and academic experts on the feasibility and consequences of academic-proposed threats. This is in part due to inadequate simulation models which do not evaluate threats based on attackers full capabilities and goals. To address this gap, in this work we first analyze the main attack surfaces of the smart grid, and then conduct a threat analysis from the adversarial model perspective, including different levels of knowledge, goals, motivations and capabilities. To validate the model, we provide real-world examples of the potential capabilities by studying known vulnerabilities in critical components, and then analyzing existing cyber-attacks that have affected the smart grid, either directly or indirectly.
- Abstract(参考訳): 電力網は、電力の効率的で堅牢な発電、送電、送電および消費を可能にする重要なインフラである。
近年,グリッドの動作とメンテナンスを最適化するコンピューティングとネットワークデバイスが,物理部品に備わっている。
このスマートパワーグリッドのサイバードメインは、物理的なドメインに対する古典的な脅威を増す新たな脅威を開く。
そのため、規制機関、業界、アカデミーを含む様々な利害関係者は、サイバーリスクを緩和し軽減するためのセキュリティメカニズムの提供に力を入れている。
これらの努力にもかかわらず、スマートグリッドに影響を及ぼした様々なサイバー攻撃があり、いくつかのケースでは破滅的な結果をもたらし、業界は高名な敵からの攻撃に備えていない可能性があることを示している。
同時に、近年の研究では、グリッド実践者や学術専門家の間で、学術が提案する脅威の実現可能性と結果に関する合意の欠如が示されている。
これは、攻撃者の完全な能力と目標に基づいて脅威を評価しない、不適切なシミュレーションモデルが原因である。
このギャップに対処するため、この研究では、まずスマートグリッドの主要な攻撃面を分析し、異なるレベルの知識、目標、モチベーション、能力を含む敵モデルの観点から脅威分析を行います。
モデルを検証するために、我々は重要なコンポーネントの既知の脆弱性を調査し、その後、直接的または間接的に、スマートグリッドに影響を及ぼした既存のサイバー攻撃を分析することによって、潜在的な能力を実例で示す。
関連論文リスト
- Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Siren -- Advancing Cybersecurity through Deception and Adaptive Analysis [0.0]
このプロジェクトは、制御された環境に潜在的な脅威を引き出すための洗練された手法を採用している。
アーキテクチャフレームワークには、リンク監視プロキシ、動的リンク分析のための機械学習モデルが含まれている。
シミュレーションされたユーザアクティビティの組み入れは、潜在的攻撃者からの攻撃を捕捉し、学習するシステムの能力を拡張する。
論文 参考訳(メタデータ) (2024-06-10T12:47:49Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
本研究では,電力網における多段階サイバー攻撃の合成データを生成するモデルを提案する。
攻撃者のステップのシーケンスをモデル化するためにアタックツリーを使用し、ディフェンダーのアクションを組み込むゲーム理論のアプローチを使用する。
論文 参考訳(メタデータ) (2023-12-21T09:54:18Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
金融セクターにおける悪意ある攻撃のエスカレートリスクを考えると、機械学習モデルの敵戦略と堅牢な防御メカニズムを理解することが重要である。
本研究の目的は、逐次的な財務データを入力として使用するニューラルネットワークモデルに対する敵攻撃と防御の現状とダイナミクスを調査することである。
我々は、現代の金融取引データにおける問題の現実的かつ詳細な調査を可能にする競争を設計した。
参加者は直接対決するので、実生活に近い環境で攻撃や防御が検討される。
論文 参考訳(メタデータ) (2023-08-22T12:53:09Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
スマートグリッドシステムは電力業界にとって重要なものだが、その高度なアーキテクチャ設計と運用によって、多くのサイバーセキュリティの脅威にさらされている。
人工知能(AI)ベースの技術は、さまざまなコンピュータ設定でサイバー攻撃を検出することで、ますます人気が高まっている。
現在のAIシステムは、GAN(Generative Adversarial Networks)のような高度な敵系が最近出現したため、公開され、消滅している。
論文 参考訳(メタデータ) (2022-02-14T21:41:36Z) - Machine Learning in Generation, Detection, and Mitigation of
Cyberattacks in Smart Grid: A Survey [1.3299946892361474]
スマートグリッド(スマートグリッド、英: Smart grid、SG)は、現代のサイバー・物理機器を利用した複雑なサイバー物理システムである。
サイバー攻撃は、最先端のシステムの使用と進歩に直面する主要な脅威である。
機械学習(ML)は、攻撃者やシステムオペレーターによるSGのサイバー攻撃を悪用し、防御するために使用されている。
論文 参考訳(メタデータ) (2020-09-01T05:16:51Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。