論文の概要: Explanation Hacking: The perils of algorithmic recourse
- arxiv url: http://arxiv.org/abs/2406.11843v1
- Date: Fri, 22 Mar 2024 12:49:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 07:40:34.634631
- Title: Explanation Hacking: The perils of algorithmic recourse
- Title(参考訳): Explanation Hacking: アルゴリズムによる会話の危険性
- Authors: Emily Sullivan, Atoosa Kasirzadeh,
- Abstract要約: 我々は、リコメンデーションの説明がいくつかの概念的な落とし穴に直面しており、問題のある説明ハッキングにつながると論じている。
代替として、AI決定の説明は理解を目的とすべきである、と我々は主張する。
- 参考スコア(独自算出の注目度): 2.967024581564439
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We argue that the trend toward providing users with feasible and actionable explanations of AI decisions, known as recourse explanations, comes with ethical downsides. Specifically, we argue that recourse explanations face several conceptual pitfalls and can lead to problematic explanation hacking, which undermines their ethical status. As an alternative, we advocate that explanations of AI decisions should aim at understanding.
- Abstract(参考訳): 我々は、リコメンデーション説明として知られるAI決定の実用的で実行可能な説明をユーザーに提供しようとするトレンドは、倫理的な欠点を伴っていると論じている。
具体的には、リコースの説明がいくつかの概念的な落とし穴に直面しており、倫理的地位を損なうような、問題のある説明ハッキングに繋がる可能性があると論じる。
代替として、AI決定の説明は理解を目的とすべきである、と我々は主張する。
関連論文リスト
- Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - In Search of Verifiability: Explanations Rarely Enable Complementary
Performance in AI-Advised Decision Making [25.18203172421461]
説明は、人間の意思決定者がAIの予測の正しさを検証できる範囲でのみ有用である、と我々は主張する。
また、補完性能の目的と適切な依存度を比較し、後者を結果段階と戦略段階の信頼度の概念に分解する。
論文 参考訳(メタデータ) (2023-05-12T18:28:04Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
データ駆動最適化では、コンテキスト情報と機械学習アルゴリズムを使用して、不確実なパラメータによる決定問題の解決策を見つける。
本稿では,データ駆動型問題に対する解法を説明するために,対実的説明手法を提案する。
在庫管理やルーティングといった運用管理における重要な問題を説明することで,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-24T15:25:16Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - From Explanation to Recommendation: Ethical Standards for Algorithmic
Recourse [0.0]
我々は、リコースは、説明問題ではなく、レコメンデーション問題と見なされるべきであると主張する。
本稿では,アルゴリズム的言論における多様性制約について考察する。
論文 参考訳(メタデータ) (2022-05-30T20:09:42Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
我々は「成功」は、その説明がどんな情報を含むかだけでなく、人間の説明者がどのような情報から理解するかにも依存すると考えている。
我々は、人間の説明による社会的帰属の枠組みとして、行動の民意的概念を用いる。
論文 参考訳(メタデータ) (2022-01-27T00:19:41Z) - Post-Hoc Explanations Fail to Achieve their Purpose in Adversarial
Contexts [12.552080951754963]
既存の計画された法律は、機械学習アルゴリズムに関する情報を提供するための様々な義務を規定している。
多くの研究者がこの目的のためにポストホックな説明アルゴリズムを使うことを提案する。
法則の目的を達成するには,ポストホックな説明アルゴリズムが適さないことを示す。
論文 参考訳(メタデータ) (2022-01-25T13:12:02Z) - Making Things Explainable vs Explaining: Requirements and Challenges
under the GDPR [2.578242050187029]
ExplanatorY AI(YAI)はXAI上に構築され、説明可能な情報の収集と整理を目的としている。
本稿では,自動意思決定システム(ADM)について,説明空間上の適切な経路を特定するための説明を生成する問題について述べる。
論文 参考訳(メタデータ) (2021-10-02T08:48:47Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - Algorithmic Recourse: from Counterfactual Explanations to Interventions [16.9979815165902]
反事実的な説明は、どこに着く必要があるのかを個人に知らせるが、そこにたどり着くには至らない、と我々は主張する。
代わりに、最小限の介入を通して、最も近い対実的な説明から言い換えへのパラダイムシフトを提案する。
論文 参考訳(メタデータ) (2020-02-14T22:49:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。