論文の概要: ARTIST: Improving the Generation of Text-rich Images by Disentanglement
- arxiv url: http://arxiv.org/abs/2406.12044v1
- Date: Mon, 17 Jun 2024 19:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 00:07:10.986371
- Title: ARTIST: Improving the Generation of Text-rich Images by Disentanglement
- Title(参考訳): ARTIST:アンタングル化によるテキストリッチ画像生成の改善
- Authors: Jianyi Zhang, Yufan Zhou, Jiuxiang Gu, Curtis Wigington, Tong Yu, Yiran Chen, Tong Sun, Ruiyi Zhang,
- Abstract要約: テキスト構造学習に焦点を当てたARTISTという新しいフレームワークを提案する。
我々は、事前訓練されたテキスト構造モデルからテキスト構造情報を同化できるように、視覚拡散モデルを微調整する。
MARIO-Evalベンチマークの実証結果は,提案手法の有効性を裏付けるものであり,様々な指標において最大15%の改善が見られた。
- 参考スコア(独自算出の注目度): 52.23899502520261
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion models have demonstrated exceptional capabilities in generating a broad spectrum of visual content, yet their proficiency in rendering text is still limited: they often generate inaccurate characters or words that fail to blend well with the underlying image. To address these shortcomings, we introduce a new framework named ARTIST. This framework incorporates a dedicated textual diffusion model to specifically focus on the learning of text structures. Initially, we pretrain this textual model to capture the intricacies of text representation. Subsequently, we finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model. This disentangled architecture design and the training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation. Additionally, we leverage the capabilities of pretrained large language models to better interpret user intentions, contributing to improved generation quality. Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15\% in various metrics.
- Abstract(参考訳): 拡散モデルは、広い範囲の視覚コンテンツを生成できるという異常な能力を示したが、テキストの描画能力はまだ限られており、下層の画像とうまく融合できない不正確な文字や単語を生成することが多い。
これらの欠点に対処するため、ARTISTという新しいフレームワークを導入する。
このフレームワークには専用のテキスト拡散モデルが含まれており、特にテキスト構造の学習に焦点を当てている。
当初、テキスト表現の複雑さを捉えるために、このテキストモデルを事前訓練する。
その後、視覚拡散モデルを微調整し、事前訓練されたテキストモデルからテキスト構造情報を同化できるようにする。
この歪んだアーキテクチャ設計とトレーニング戦略は、テキストリッチな画像生成のための拡散モデルのテキストレンダリング能力を著しく向上させる。
さらに、トレーニング済みの大規模言語モデルの能力を活用して、ユーザの意図をよりよく解釈し、生成品質の向上に貢献します。
MARIO-Evalベンチマークの実証結果は,提案手法の有効性を裏付けるものであり,様々な指標において最大15倍の精度向上を示した。
関連論文リスト
- CustomText: Customized Textual Image Generation using Diffusion Models [13.239661107392324]
テキスト画像生成は、広告、教育、製品パッケージング、ソーシャルメディア、情報視覚化、ブランディングといった様々な分野にまたがる。
拡散モデルを用いた言語誘導画像合成における最近の進歩にもかかわらず、現在のモデルは画像生成に優れ、正確なテキストレンダリングに苦慮し、フォント属性の限定的な制御を提供する。
本稿では,高精度なテキストカスタマイズによる高品質な画像合成の実現を目標とし,画像生成モデルの進歩に寄与する。
論文 参考訳(メタデータ) (2024-05-21T06:43:03Z) - Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering [118.53208190209517]
本稿では,拡散モデルの適切なテキスト記述を即時学習により学習するフレームワークを提案する。
提案手法は,入力されたテキストと生成された画像とのマッチングを改善するためのプロンプトを効果的に学習することができる。
論文 参考訳(メタデータ) (2024-01-12T03:46:29Z) - UDiffText: A Unified Framework for High-quality Text Synthesis in
Arbitrary Images via Character-aware Diffusion Models [25.219960711604728]
本稿では,事前学習した拡散モデルを用いたテキスト画像生成手法を提案する。
我々のアプローチは、オリジナルのCLIPエンコーダを置き換える軽量文字レベルテキストエンコーダの設計と訓練である。
推論段階の精細化プロセスを用いることで、任意に与えられた画像のテキストを合成する際に、顕著に高いシーケンス精度を実現する。
論文 参考訳(メタデータ) (2023-12-08T07:47:46Z) - Reason out Your Layout: Evoking the Layout Master from Large Language
Models for Text-to-Image Synthesis [47.27044390204868]
本稿では,レイアウト生成器としてLarge Language Models (LLM) を用いたT2I拡散モデルの改良手法を提案する。
実験により,画像の画質とレイアウト精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-28T14:51:13Z) - ControlStyle: Text-Driven Stylized Image Generation Using Diffusion
Priors [105.37795139586075]
そこで本研究では,テキスト駆動型スタイリング画像生成という,テキスト・イメージ・モデルをスタイリングするための新しいタスクを提案する。
トレーニング可能な変調ネットワークで事前訓練されたテキスト・ツー・イメージモデルをアップグレードすることで,新しい拡散モデル(ControlStyle)を提案する。
実験では、より視覚的で芸術的な結果を生み出すためのコントロールスタイルの有効性が示されています。
論文 参考訳(メタデータ) (2023-11-09T15:50:52Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
本研究では,事前学習拡散モデルに対するセマンティック・アダプタ (SUR-adapter) と呼ばれる簡易なパラメータ効率の良い微調整手法を提案する。
ユーザエクスペリエンスの向上により,テキストから画像への拡散モデルの使いやすさが向上する。
論文 参考訳(メタデータ) (2023-05-09T05:48:38Z) - GlyphDiffusion: Text Generation as Image Generation [100.98428068214736]
テキスト誘導画像生成によるテキスト生成のための新しい拡散手法であるGlyphDiffusionを提案する。
私たちのキーとなるアイデアは、ターゲットのテキストを視覚言語コンテンツを含むグリフイメージとしてレンダリングすることです。
また,本モデルでは,近年の拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-25T02:14:44Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
本稿では,画像間翻訳の領域にテキスト・ツー・イメージ合成を取り入れた新しいフレームワークを提案する。
本手法は,事前学習したテキスト・画像拡散モデルのパワーを利用して,対象のテキストに適合する新たな画像を生成する。
論文 参考訳(メタデータ) (2022-11-22T20:39:18Z) - Language Does More Than Describe: On The Lack Of Figurative Speech in
Text-To-Image Models [63.545146807810305]
テキスト・ツー・イメージ拡散モデルでは、テキスト入力プロンプトから高品質な画像を生成することができる。
これらのモデルは、コンテンツベースのラベル付けプロトコルから収集されたテキストデータを用いて訓練されている。
本研究では,現在使用されているテキスト・画像拡散モデルのトレーニングに使用されている公開テキストデータの感情性,目的性,抽象化の程度を特徴付ける。
論文 参考訳(メタデータ) (2022-10-19T14:20:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。