論文の概要: Certified ML Object Detection for Surveillance Missions
- arxiv url: http://arxiv.org/abs/2406.12362v1
- Date: Tue, 18 Jun 2024 07:42:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 20:16:07.408392
- Title: Certified ML Object Detection for Surveillance Missions
- Title(参考訳): 監視ミッションのための認証MLオブジェクト検出
- Authors: Mohammed Belcaid, Eric Bonnafous, Louis Crison, Christophe Faure, Eric Jenn, Claire Pagetti,
- Abstract要約: 本稿では,機械学習オブジェクト検出コンポーネントを含むドローン検出システムの開発プロセスについて述べる。
その目的は、ED 324 / ARP 6983標準の勧告によって必要とされる、許容可能なパフォーマンス目標に達し、十分な証拠を提供することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a development process of a drone detection system involving a machine learning object detection component. The purpose is to reach acceptable performance objectives and provide sufficient evidences, required by the recommendations (soon to be published) of the ED 324 / ARP 6983 standard, to gain confidence in the dependability of the designed system.
- Abstract(参考訳): 本稿では,機械学習オブジェクト検出コンポーネントを含むドローン検出システムの開発プロセスについて述べる。
ED 324 / ARP 6983 規格の勧告(出版予定)によって要求される十分な証拠を提供し、設計システムの信頼性を確保することを目的としている。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達している。
本稿では,暗黙的背景知識を活用するための学習バックグラウンドプロンプトを提案するため,LBPと呼ばれる新しいOVDフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T17:32:26Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
バックボーンアーキテクチャによって抽出された特徴の質は、全体的な検出性能に大きな影響を与える可能性がある。
本研究は,KITTI,NuScenes,BDDの3つの自律走行車データセットを評価し,対象検出タスクにおける異なるバックボーンアーキテクチャの性能を比較した。
論文 参考訳(メタデータ) (2023-09-15T17:32:15Z) - Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances [51.70835702029498]
本稿では,ディープラーニングに基づくRSOD手法の最近の成果を概観する。
RSODの主な課題として,マルチスケールオブジェクト検出,回転オブジェクト検出,弱いオブジェクト検出,小さなオブジェクト検出,限られた監視を伴うオブジェクト検出の5つを挙げる。
また、RSODの分野で広く使用されているベンチマークデータセットと評価指標、およびRSODのアプリケーションシナリオについてもレビューする。
論文 参考訳(メタデータ) (2023-09-13T06:48:32Z) - Towards Building Self-Aware Object Detectors via Reliable Uncertainty
Quantification and Calibration [17.461451218469062]
本稿では,自己認識オブジェクト検出(SAOD)タスクを紹介する。
SAODタスクは、自律運転のような安全クリティカルな環境でオブジェクト検出器が直面する課題を尊重し、遵守する。
我々は、多数のオブジェクト検出器をテストするために、新しいメトリクスと大規模なテストデータセットを導入したフレームワークを広範囲に使用しています。
論文 参考訳(メタデータ) (2023-07-03T11:16:39Z) - Out-of-Distribution Detection for LiDAR-based 3D Object Detection [8.33476679218773]
3Dオブジェクト検出は、自動走行の重要な部分である。
ディープモデルは、高い信頼度スコアをアウト・オブ・ディストリビューション(OOD)入力に割り当てたことで知られる。
本稿では,LiDARを用いた3Dオブジェクト検出のためのOOD入力の検出に焦点をあてる。
論文 参考訳(メタデータ) (2022-09-28T21:39:25Z) - Learning to Detect Open Carry and Concealed Object with 77GHz Radar [7.608789301874509]
本稿では,搬送物体検出問題に対して,77GHzmm波レーダを用いた比較的未探索領域に着目した。
提案システムでは, ノートパソコン, 電話, ナイフの3種類の物体を, 空き荷物や隠蔽ケースでリアルタイムに検出できる。
このシステムは77GHzレーダーによる搬送物体の検出を目的とした、他の将来の研究のための最初のベースラインとなる。
論文 参考訳(メタデータ) (2021-10-31T17:33:28Z) - Robustness Enhancement of Object Detection in Advanced Driver Assistance
Systems (ADAS) [0.0]
提案システムは、(1)最新鋭の物体検出器と対等な精度で性能が期待できる小型のワンステージ物体検出器と、(2)状況の意義から、自動運転車が人間の行動を必要とする場合には、警報信号をクラウドに送信するのに役立つ環境条件検出器の2つの主要コンポーネントを含む。
論文 参考訳(メタデータ) (2021-05-04T15:42:43Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Black-box Explanation of Object Detectors via Saliency Maps [66.745167677293]
対象検出器の予測のための視覚的説明を生成するD-RISEを提案する。
本稿では, YOLOv3などの1段検出器やFaster-RCNNのような2段検出器など, 異なる対象検出器に容易にD-RISEを適用可能であることを示す。
論文 参考訳(メタデータ) (2020-06-05T02:13:35Z) - Manifold for Machine Learning Assurance [9.594432031144716]
本稿では,機械学習(ML)システムにおいて,要求システムを暗黙的に記述した高次元学習データから抽出する機械学習手法を提案する。
その後、テストの精度測定、テスト入力生成、ターゲットのMLシステムの実行時の監視など、さまざまな品質保証タスクに利用されます。
予備実験により, 提案手法により, 試験精度が試験データの多様性を推し進めるとともに, テスト生成手法が故障を防止し, 現実的なテストケースを生み出すことが確認され, 実行時モニタリングは, 対象システムの出力の信頼性を独立的に評価する手段を提供する。
論文 参考訳(メタデータ) (2020-02-08T11:39:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。