論文の概要: Automated MRI Quality Assessment of Brain T1-weighted MRI in Clinical Data Warehouses: A Transfer Learning Approach Relying on Artefact Simulation
- arxiv url: http://arxiv.org/abs/2406.12448v1
- Date: Tue, 18 Jun 2024 09:53:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:37:07.958338
- Title: Automated MRI Quality Assessment of Brain T1-weighted MRI in Clinical Data Warehouses: A Transfer Learning Approach Relying on Artefact Simulation
- Title(参考訳): 臨床データウェアハウスにおける脳T1強調MRIのMRI品質自動評価 : 人工物シミュレーションに基づく伝達学習アプローチ
- Authors: Sophie Loizillon, Simona Bottani, Stéphane Mabille, Yannick Jacob, Aurélien Maire, Sebastian Ströer, Didier Dormont, Olivier Colliot, Ninon Burgos,
- Abstract要約: 本研究では,臨床データウェアハウス内における3次元勾配エコーT1強調脳MRIの自動品質制御のための革新的な転写学習手法を提案する。
まず、低コントラストを誘発し、ノイズを加え、動き人工物を導入することにより、研究データセットからの画像を意図的に破壊する。
3つのアーティファクト固有のモデルは、これらの破損した画像を用いて事前訓練され、異なる種類のアーティファクトを検出する。
- 参考スコア(独自算出の注目度): 3.115212915804253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of clinical data warehouses (CDWs), which contain the medical data of millions of patients, has paved the way for vast data sharing for research. The quality of MRIs gathered in CDWs differs greatly from what is observed in research settings and reflects a certain clinical reality. Consequently, a significant proportion of these images turns out to be unusable due to their poor quality. Given the massive volume of MRIs contained in CDWs, the manual rating of image quality is impossible. Thus, it is necessary to develop an automated solution capable of effectively identifying corrupted images in CDWs. This study presents an innovative transfer learning method for automated quality control of 3D gradient echo T1-weighted brain MRIs within a CDW, leveraging artefact simulation. We first intentionally corrupt images from research datasets by inducing poorer contrast, adding noise and introducing motion artefacts. Subsequently, three artefact-specific models are pre-trained using these corrupted images to detect distinct types of artefacts. Finally, the models are generalised to routine clinical data through a transfer learning technique, utilising 3660 manually annotated images. The overall image quality is inferred from the results of the three models, each designed to detect a specific type of artefact. Our method was validated on an independent test set of 385 3D gradient echo T1-weighted MRIs. Our proposed approach achieved excellent results for the detection of bad quality MRIs, with a balanced accuracy of over 87%, surpassing our previous approach by 3.5 percent points. Additionally, we achieved a satisfactory balanced accuracy of 79% for the detection of moderate quality MRIs, outperforming our previous performance by 5 percent points. Our framework provides a valuable tool for exploiting the potential of MRIs in CDWs.
- Abstract(参考訳): 数百万人の患者の医療データを含む臨床データウェアハウス(CDW)の出現は、研究のための膨大なデータ共有の道を開いた。
CDWで収集されたMRIの質は、研究環境で観察されるものとは大きく異なり、特定の臨床的現実を反映している。
その結果、これらの画像のかなりの割合は、品質が悪いために使用不可能であることが判明した。
CDWに含まれるMRIの量を考えると、手動による画質評価は不可能である。
したがって,CDW内の劣化画像を効果的に識別できる自動化ソリューションを開発する必要がある。
本研究は,CDW内における3次元勾配エコーT1強調脳MRIの自動品質制御のための斬新な転写学習手法を提案する。
まず、低コントラストを誘発し、ノイズを加え、動き人工物を導入することにより、研究データセットからの画像を意図的に破壊する。
その後、3つのアーティファクト固有のモデルが、これらの破損した画像を使用して事前訓練され、異なる種類のアーティファクトを検出する。
最後に,手動で注釈付けした3660枚の画像を用いて,転写学習技術を用いて臨床データを解析する。
画像の全体的な品質は、3つのモデルの結果から推定され、それぞれが特定の種類の人工物を検出するように設計されている。
3853次元勾配エコーT1強調MRIによる独立検体を用いて本法の有効性を検証した。
提案手法は, 良質MRIの精度が87%以上で, 従来の手法を3.5パーセント上回る精度で, 良好な結果を得た。
また,中等度MRI検出の精度は79%と良好なバランスをとっており,前回のパフォーマンスを5%上回った。
われわれのフレームワークは、CDWにおけるMRIの可能性を活用するための貴重なツールを提供する。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Non-Reference Quality Assessment for Medical Imaging: Application to Synthetic Brain MRIs [0.0]
本研究では,3次元ResNetをトレーニングすることで脳MRI品質を評価するための,ディープラーニングに基づく新しい非参照手法を提案する。
このネットワークは、MRIスキャンでよく見られる6つの異なるアーティファクトで品質を推定するように設計されている。
その結果、歪みを正確に推定し、複数の視点から画質を反映する性能が向上した。
論文 参考訳(メタデータ) (2024-07-20T22:05:30Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - Automatic Diagnosis of Myocarditis Disease in Cardiac MRI Modality using
Deep Transformers and Explainable Artificial Intelligence [20.415917092103033]
心筋炎は、多くの人の健康を脅かす重要な心血管疾患(CVD)である。
HIVなどを含む微生物やウイルスの発生は、心筋炎疾患(MCD)の発生に重要な役割を担っている
提案したCADSは,データセット,前処理,特徴抽出,分類,後処理など,いくつかのステップで構成されている。
論文 参考訳(メタデータ) (2022-10-26T10:34:20Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Image Quality Assessment for Magnetic Resonance Imaging [4.05136808278614]
画像品質評価(IQA)アルゴリズムは、画像品質に対する人間の認識を再現することを目的としている。
我々は、MRIに関連する問題を解決するために訓練されたニューラルネットワークモデルの出力を使用する。
7人の訓練された放射線学者が歪んだ画像を評価し、その判断は35の異なる画像品質指標と相関した。
論文 参考訳(メタデータ) (2022-03-15T11:52:29Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
我々は、オリジナルのfastMRIチャレンジを参照するすべての公開論文によって報告されたMRI加速係数を下回る。
低解像を補うための強力な深層学習に基づく画像強化手法を検討する。
復元された画像の品質は他の方法よりも高く、MSEは0.00114、PSNRは29.6 dB、SSIMは0.956 x16加速係数である。
論文 参考訳(メタデータ) (2021-03-04T10:45:01Z) - Localized Motion Artifact Reduction on Brain MRI Using Deep Learning
with Effective Data Augmentation Techniques [2.0591563268976274]
In-Scanner MotionはMRIの画質を低下させる
深層学習に基づくMRIアーティファクト縮小モデル(DMAR)を導入し,脳MRIスキャンにおける頭部運動アーティファクトの局在と補正を行う。
論文 参考訳(メタデータ) (2020-07-10T03:30:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。