論文の概要: Variational Distillation of Diffusion Policies into Mixture of Experts
- arxiv url: http://arxiv.org/abs/2406.12538v1
- Date: Tue, 18 Jun 2024 12:15:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:17:37.191805
- Title: Variational Distillation of Diffusion Policies into Mixture of Experts
- Title(参考訳): 拡散剤の変異蒸留による専門家の混合
- Authors: Hongyi Zhou, Denis Blessing, Ge Li, Onur Celik, Xiaogang Jia, Gerhard Neumann, Rudolf Lioutikov,
- Abstract要約: 本研究は, 拡散反応をエキスパート混合体 (MoE) に蒸留する新しい方法である変動拡散蒸留 (VDD) を導入する。
拡散モデル(英: Diffusion Models)は、複雑なマルチモーダル分布を正確に学習し、表現する能力があるため、生成モデリングにおける現在の最先端技術である。
VDDは、事前学習した拡散モデルをMoEモデルに蒸留し、拡散モデルの表現性を混合モデルの利点と組み合わせる最初の方法である。
- 参考スコア(独自算出の注目度): 26.315682445979302
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work introduces Variational Diffusion Distillation (VDD), a novel method that distills denoising diffusion policies into Mixtures of Experts (MoE) through variational inference. Diffusion Models are the current state-of-the-art in generative modeling due to their exceptional ability to accurately learn and represent complex, multi-modal distributions. This ability allows Diffusion Models to replicate the inherent diversity in human behavior, making them the preferred models in behavior learning such as Learning from Human Demonstrations (LfD). However, diffusion models come with some drawbacks, including the intractability of likelihoods and long inference times due to their iterative sampling process. The inference times, in particular, pose a significant challenge to real-time applications such as robot control. In contrast, MoEs effectively address the aforementioned issues while retaining the ability to represent complex distributions but are notoriously difficult to train. VDD is the first method that distills pre-trained diffusion models into MoE models, and hence, combines the expressiveness of Diffusion Models with the benefits of Mixture Models. Specifically, VDD leverages a decompositional upper bound of the variational objective that allows the training of each expert separately, resulting in a robust optimization scheme for MoEs. VDD demonstrates across nine complex behavior learning tasks, that it is able to: i) accurately distill complex distributions learned by the diffusion model, ii) outperform existing state-of-the-art distillation methods, and iii) surpass conventional methods for training MoE.
- Abstract(参考訳): 本研究は, 変分推論による拡散反応を混合式 (MoE) に蒸留する新しい方法である変分拡散蒸留 (VDD) を導入する。
拡散モデル(英: Diffusion Models)は、複雑なマルチモーダル分布を正確に学習し、表現する能力があるため、生成モデリングにおける現在の最先端技術である。
この能力により、拡散モデルは人間の行動に固有の多様性を再現することができ、人間デモテーションからの学習(LfD)のような行動学習のモデルとして好まれる。
しかし、拡散モデルには、確率の抽出可能性や、反復的なサンプリングプロセスによる長い推論時間など、いくつかの欠点がある。
特に推論時間は、ロボット制御のようなリアルタイムアプリケーションに重大な課題をもたらす。
対照的に、MoEsは上記の問題に効果的に対処すると同時に、複雑な分布を表現できる能力を維持しているが、訓練するのは非常に難しい。
VDDは、事前学習した拡散モデルをMoEモデルに蒸留し、拡散モデルの表現性を混合モデルの利点と組み合わせる最初の方法である。
具体的には、VDDは変分目的の分解的上限を利用して、各専門家の個別の訓練を可能にし、その結果、MoEsの堅牢な最適化スキームとなる。
VDDは、9つの複雑な行動学習タスクを実証します。
一 拡散モデルで学習した複素分布を正確に蒸留すること。
二 既存の最先端蒸留方法より優れたもの、及び
三 従来の訓練方法を超えていること。
関連論文リスト
- Physics Informed Distillation for Diffusion Models [21.173298037358954]
本研究では,教師の拡散モデルに対応するODEシステムの解法を表現するために,学生モデルを用いた物理インフォームド蒸留(PID)を導入する。
PIDの性能は最近の蒸留法と同等である。
論文 参考訳(メタデータ) (2024-11-13T07:03:47Z) - DDIL: Improved Diffusion Distillation With Imitation Learning [57.3467234269487]
拡散モデルは生成モデリング(例:text-to-image)に優れるが、サンプリングには複数の遅延ネットワークパスが必要である。
プログレッシブ蒸留や一貫性蒸留は、パスの数を減らして将来性を示す。
DDILの一貫性は, プログレッシブ蒸留 (PD), 潜在整合モデル (LCM) および分散整合蒸留 (DMD2) のベースラインアルゴリズムにより向上することを示した。
論文 参考訳(メタデータ) (2024-10-15T18:21:47Z) - Distillation of Discrete Diffusion through Dimensional Correlations [21.078500510691747]
離散拡散における「ミクチャー」モデルは、拡張性を維持しながら次元相関を扱える。
CIFAR-10データセットで事前学習した連続時間離散拡散モデルを蒸留することにより,提案手法が実際に動作することを実証的に実証した。
論文 参考訳(メタデータ) (2024-10-11T10:53:03Z) - Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
蒸留不要1ステップ拡散モデルを提案する。
具体的には、敵対的訓練に参加するためのノイズ認識識別器(NAD)を提案する。
我々は、エッジ対応disTS(EA-DISTS)による知覚損失を改善し、詳細な情報を生成するモデルの能力を向上させる。
論文 参考訳(メタデータ) (2024-10-05T16:41:36Z) - How Diffusion Models Learn to Factorize and Compose [14.161975556325796]
拡散モデルは、トレーニングセットに表示されない可能性のある要素を組み合わせた、フォトリアリスティックな画像を生成することができる。
本研究では,拡散モデルが構成可能な特徴の意味的意味的・要因的表現を学習するかどうかを考察する。
論文 参考訳(メタデータ) (2024-08-23T17:59:03Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models [76.46246743508651]
我々は,現在の拡散モデルが後方認知において表現力のあるボトルネックを持っていることを示した。
本稿では,後方復調のための表現的かつ効率的なモデルであるソフトミキシング・デノナイジング(SMD)を導入する。
論文 参考訳(メタデータ) (2023-09-25T12:03:32Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
拡散モデルは、時間ステップの零点付近で無限のリプシッツをしばしば表すことを示す。
これは、積分演算に依存する拡散過程の安定性と精度に脅威をもたらす。
我々はE-TSDMと呼ばれる新しい手法を提案し、これは0に近い拡散モデルのリプシッツを除去する。
論文 参考訳(メタデータ) (2023-06-20T03:05:28Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
強化学習(RL)による拡散モデルの学習段階を導く新しい枠組みを提案する。
RLは、政策そのものではなく、指数スケールの報酬に比例したペイオフ分布からのサンプルによる政策勾配を計算することができる。
3次元形状と分子生成タスクの実験は、既存の条件拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-14T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。