論文の概要: P-Tailor: Customizing Personality Traits for Language Models via Mixture of Specialized LoRA Experts
- arxiv url: http://arxiv.org/abs/2406.12548v1
- Date: Tue, 18 Jun 2024 12:25:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:07:52.603332
- Title: P-Tailor: Customizing Personality Traits for Language Models via Mixture of Specialized LoRA Experts
- Title(参考訳): P-Tailor: 特殊化LoRAエキスパートの混在による言語モデルのパーソナリティ特性のカスタマイズ
- Authors: Yuhao Dan, Jie Zhou, Qin Chen, Junfeng Tian, Liang He,
- Abstract要約: オープン性,良心性,外向性,同意性,神経症など,さまざまな特徴を表現するために,専門的な LoRA の専門家を学ぶ。
我々は、P-Tailorとパーソナリティ損失専門化を統合し、異なるパーソナリティ特性を専門化する専門家を奨励する。
- 参考スコア(独自算出の注目度): 34.374681921626205
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Personalized large language models (LLMs) have attracted great attention in many applications, such as intelligent education and emotional support. Most work focuses on controlling the character settings based on the profile (e.g., age, skill, experience, and so on). Conversely, the psychological theory-based personality traits with implicit expression and behavior are not well modeled, limiting their potential application in more specialized fields such as the psychological counseling agents. In this paper, we propose a mixture of experts (MoE)-based personalized LLMs, named P-tailor, to model the Big Five Personality Traits. Particularly, we learn specialized LoRA experts to represent various traits, such as openness, conscientiousness, extraversion, agreeableness and neuroticism. Then, we integrate P-Tailor with a personality specialization loss, promoting experts to specialize in distinct personality traits, thereby enhancing the efficiency of model parameter utilization. Due to the lack of datasets, we also curate a high-quality personality crafting dataset (PCD) to learn and develop the ability to exhibit different personality traits across various topics. We conduct extensive experiments to verify the great performance and effectiveness of P-Tailor in manipulation of the fine-grained personality traits of LLMs.
- Abstract(参考訳): パーソナライズされた大規模言語モデル(LLM)は、知的教育や感情的支援など、多くの応用において大きな注目を集めている。
ほとんどの作業は、プロファイル(例えば、年齢、スキル、経験など)に基づいて文字設定を制御することに焦点を当てている。
逆に、暗黙的な表現と行動を持つ心理学理論に基づく性格特性は、十分にモデル化されておらず、心理学的カウンセリングエージェントのようなより専門的な分野への応用を制限している。
本稿では,P-tailor(P-tailor)という名の専門家(MoE)によるパーソナライズ LLM を混合して,Big Five Personality Traits をモデル化する。
特に、オープン性、良心性、外向性、同意性、神経症など、さまざまな特徴を表現するために、専門的なLoRAの専門家を学ぶ。
そして,P-Tailorとパーソナライズ特化損失を統合し,個別のパーソナライズ特性を専門とする専門家の育成を行い,モデルパラメータ利用の効率化を図る。
データセットの欠如により、さまざまなトピックにまたがる異なる性格特性を学習し、開発するための高品質なパーソナリティ作成データセット(PCD)をキュレートする。
我々は,LLMの微粒な性格特性の操作において,P-Tailorの優れた性能と有効性を検証するための広範囲な実験を行った。
関連論文リスト
- Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits [4.092862870428798]
我々は,人格特性を統合することで,カスタム文字のLLMをデータ処理し,訓練するためのフレームワークOrcaを提案する。
Orcaは4つのステージで構成されている。 パーソナリティ特性の推測、LCMの活用により、ユーザのBigFiveパーソナリティ特性のレポートとスコアを推測する。
提案手法は,本ベンチマークにおいて優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-11-15T07:35:47Z) - Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
パーソナリティ認識は,対話やソーシャルメディア投稿などのユーザデータに含まれる性格特性を識別することを目的としている。
本稿では,人格特性の証拠として推論過程を明らかにすることを目的とした,説明可能な人格認識という新しい課題を提案する。
論文 参考訳(メタデータ) (2024-09-29T14:41:43Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
本稿では、パーソナリティを指標としたデータを用いて、ロールプレイング言語モデル(RPLM)を強化することを提案する。
具体的には、心理学的尺度からの質問を活用し、高度なRPAを蒸留し、文字の心を把握した対話を生成する。
実験により,本データセットを用いてトレーニングしたRPLMは,一般人格関連評価と人格関連評価の両面において,高度なロールプレイング能力を示した。
論文 参考訳(メタデータ) (2024-06-27T06:24:00Z) - Is persona enough for personality? Using ChatGPT to reconstruct an agent's latent personality from simple descriptions [2.6080756513915824]
パーソナリティ(Personality)は、人間の認知の基本的な側面であり、行動、思考、感情に影響を与える様々な特徴を含んでいる。
本稿では,社会デコグラフィとパーソナリティ型情報を含む簡単な記述のみに基づいて,これらの複雑な認知属性を再構築する大規模言語モデル(LLM)の機能について考察する。
論文 参考訳(メタデータ) (2024-06-18T02:32:57Z) - Can AI Understand Human Personality? -- Comparing Human Experts and AI Systems at Predicting Personality Correlations [41.07853967415879]
パーソナリティマップや GPT-4o や Claude 3 Opus といった一般的な LLM など,特殊なディープニューラルネットワークの能力をテストする。
個々の人間と比較すると、すべてのAIモデルは、普通の人々や学術専門家の大多数よりも優れた予測をします。
論文 参考訳(メタデータ) (2024-06-12T13:03:38Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
本稿では,Large Language Models (LLMs) の性格特性の編集に焦点をあてた革新的なタスクを紹介する。
このタスクに対処する新しいベンチマークデータセットであるPersonalityEditを構築します。
論文 参考訳(メタデータ) (2023-10-03T16:02:36Z) - PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits [30.770525830385637]
本研究では,ビッグファイブ・パーソナリティ・モデルに基づく大規模言語モデル(LLM)の行動について検討する。
その結果, LLMペルソナの自己申告したBFIスコアは, 指定した性格タイプと一致していることがわかった。
人間の評価は、人間は最大80%の精度でいくつかの性格特性を知覚できることを示している。
論文 参考訳(メタデータ) (2023-05-04T04:58:00Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
言語モデルにおける知覚的パーソナリティが、言語生成において一貫して現れるかどうかを検討する。
BERT や GPT2 のような言語モデルでは、異なる文脈におけるパーソナライズマーカーの識別と反映が一貫して可能であることを示す。
この振る舞いは、非常に予測可能な方法で操作できる能力を示し、それらを人格の特徴を特定し、ダイアログシステムのようなアプリケーションにおけるペルソナを制御するツールとしてフレーム化します。
論文 参考訳(メタデータ) (2022-12-20T14:24:11Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
人間の個性理論を機械行動研究のツールとして活用することで,心理測定研究からインスピレーションを得た。
これらの疑問に答えるために,機械の動作を研究するためのMachine Personality Inventory(MPI)ツールを紹介した。
MPIは、ビッグファイブ・パーソナリティ・ファクター(Big Five Personality Factors、ビッグファイブ・パーソナリティ・ファクター)理論とパーソナリティ評価在庫に基づく標準化されたパーソナリティ・テストに従う。
パーソナリティ・プロンプト法(P2法)を考案し、特定のパーソナリティを持つLSMを制御可能な方法で誘導する。
論文 参考訳(メタデータ) (2022-05-20T07:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。