Predicting the energetic proton flux with a machine learning regression algorithm
- URL: http://arxiv.org/abs/2406.12730v1
- Date: Tue, 18 Jun 2024 15:54:50 GMT
- Title: Predicting the energetic proton flux with a machine learning regression algorithm
- Authors: Mirko Stumpo, Monica Laurenza, Simone Benella, Maria Federica Marcucci,
- Abstract summary: We present a machine learning regression algorithm which is able to forecast the energetic proton flux up to 1 hour ahead.
This approach could be helpful to improve monitoring systems of the radiation risk in both deep space and near-Earth environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The need of real-time of monitoring and alerting systems for Space Weather hazards has grown significantly in the last two decades. One of the most important challenge for space mission operations and planning is the prediction of solar proton events (SPEs). In this context, artificial intelligence and machine learning techniques have opened a new frontier, providing a new paradigm for statistical forecasting algorithms. The great majority of these models aim to predict the occurrence of a SPE, i.e., they are based on the classification approach. In this work we present a simple and efficient machine learning regression algorithm which is able to forecast the energetic proton flux up to 1 hour ahead by exploiting features derived from the electron flux only. This approach could be helpful to improve monitoring systems of the radiation risk in both deep space and near-Earth environments. The model is very relevant for mission operations and planning, especially when flare characteristics and source location are not available in real time, as at Mars distance.
Related papers
- A Machine Learning-Ready Data Processing Tool for Near Real-Time Forecasting [0.0]
This paper presents the development of a Machine Learning (ML)- ready data processing tool for Near Real-Time (NRT) space weather forecasting.
By merging data from diverse NRT sources, the tool addresses key gaps in current space weather prediction capabilities.
The tool processes and structures the data for machine learning models, focusing on time-series forecasting and event detection for extreme solar events.
arXiv Detail & Related papers (2025-02-12T16:35:46Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning [15.908645530312487]
Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in gravitational wave (GW) astronomy.
We show that machine learning has the potential to efficiently handle the vast space, involving up to seventeen parameters, associated with EMRI signals.
arXiv Detail & Related papers (2024-09-12T11:36:23Z) - Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
Class-agnostic motion prediction methods directly predict the motion of the entire point cloud.
While most existing methods rely on fully-supervised learning, the manual labeling of point cloud data is laborious and time-consuming.
We introduce three simple spatial and temporal regularization losses, which facilitate the self-supervised training process effectively.
arXiv Detail & Related papers (2024-03-20T02:58:45Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
We employ a suite of machine learning strategies to evaluate the predictive potential of a new data product for a forecast of post-solar flare SEP events.
Despite the augmented volume of data, the prediction accuracy reaches 0.7 +- 0.1, which aligns with but does not exceed these published benchmarks.
arXiv Detail & Related papers (2024-03-04T23:12:17Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Out of Distribution Detection via Domain-Informed Gaussian Process State
Space Models [22.24457254575906]
In order for robots to safely navigate in unseen scenarios, it is important to accurately detect out-of-training-distribution (OoD) situations online.
We propose a novel approach to embed existing domain knowledge in the kernel and (ii) an OoD online runtime monitor, based on receding-horizon predictions.
arXiv Detail & Related papers (2023-09-13T01:02:42Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - STG-GAN: A spatiotemporal graph generative adversarial networks for
short-term passenger flow prediction in urban rail transit systems [11.167132464665578]
Short-term passenger flow prediction is an important but challenging task for better managing urban rail transit systems.
We propose a novel deep learning-basedtemporal graph generative adversarial network (STG-GAN) model with higher prediction accuracy, higher efficiency, and lower memory occupancy.
This study can provide critical experience in conducting short-term passenger flow predictions, especially from the perspective of real-world applications.
arXiv Detail & Related papers (2022-02-10T13:18:11Z) - MATS: An Interpretable Trajectory Forecasting Representation for
Planning and Control [46.86174832000696]
Reasoning about human motion is a core component of modern human-robot interactive systems.
One of the main uses of behavior prediction in autonomous systems is to inform robot motion planning and control.
We propose a new output representation for trajectory forecasting that is more amenable to downstream planning and control use.
arXiv Detail & Related papers (2020-09-16T07:32:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.