Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning
- URL: http://arxiv.org/abs/2409.07957v1
- Date: Thu, 12 Sep 2024 11:36:23 GMT
- Title: Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning
- Authors: Bo Liang, Hong Guo, Tianyu Zhao, He wang, Herik Evangelinelis, Yuxiang Xu, Chang liu, Manjia Liang, Xiaotong Wei, Yong Yuan, Peng Xu, Minghui Du, Wei-Liang Qian, Ziren Luo,
- Abstract summary: Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in gravitational wave (GW) astronomy.
We show that machine learning has the potential to efficiently handle the vast space, involving up to seventeen parameters, associated with EMRI signals.
- Score: 15.908645530312487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in gravitational wave (GW) astronomy owing to their low-frequency nature and highly complex waveforms, which occupy a high-dimensional parameter space with numerous variables. Given their extended inspiral timescales and low signal-to-noise ratios, EMRI signals warrant prolonged observation periods. Parameter estimation becomes particularly challenging due to non-local parameter degeneracies, arising from multiple local maxima, as well as flat regions and ridges inherent in the likelihood function. These factors lead to exceptionally high time complexity for parameter analysis while employing traditional matched filtering and random sampling methods. To address these challenges, the present study applies machine learning to Bayesian posterior estimation of EMRI signals, leveraging the recently developed flow matching technique based on ODE neural networks. Our approach demonstrates computational efficiency several orders of magnitude faster than the traditional Markov Chain Monte Carlo (MCMC) methods, while preserving the unbiasedness of parameter estimation. We show that machine learning technology has the potential to efficiently handle the vast parameter space, involving up to seventeen parameters, associated with EMRI signals. Furthermore, to our knowledge, this is the first instance of applying machine learning, specifically the Continuous Normalizing Flows (CNFs), to EMRI signal analysis. Our findings highlight the promising potential of machine learning in EMRI waveform analysis, offering new perspectives for the advancement of space-based GW detection and GW astronomy.
Related papers
- Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks [0.0]
We present a purely deep neural network-based approach for estimating long memory parameters of time series models.
Parameters, such as the Hurst exponent, are critical in characterizing the long-range dependence, roughness, and self-similarity of processes.
arXiv Detail & Related papers (2024-10-03T03:14:58Z) - Q-MRS: A Deep Learning Framework for Quantitative Magnetic Resonance Spectra Analysis [13.779430559468926]
This study introduces a deep learning (DL) framework that employs transfer learning, in which the model is pre-trained on simulated datasets before it undergoes fine-tuning on in vivo data.
The proposed framework showed promising performance when applied to the Philips dataset from the BIG GABA repository.
arXiv Detail & Related papers (2024-08-28T18:05:53Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFields is a novel class of networks specifically designed to effectively represent complex temporal signals.
We conduct comprehensive analysis of the properties of ResFields and propose a matrix factorization technique to reduce the number of trainable parameters.
We demonstrate the practical utility of ResFields by showcasing its effectiveness in capturing dynamic 3D scenes from sparse RGBD cameras.
arXiv Detail & Related papers (2023-09-06T16:59:36Z) - Dilated convolutional neural network for detecting extreme-mass-ratio inspirals [8.809900732195281]
We introduce DECODE, an end-to-end model focusing on EMRI signal detection by sequence modeling in the frequency domain.
We evaluate our model on 1-year data with accumulated SNR ranging from 50 to 120 and achieve a true positive rate of 96.3% at a false positive rate of 1%.
arXiv Detail & Related papers (2023-08-31T03:16:38Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation.
We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods.
arXiv Detail & Related papers (2022-12-10T20:15:23Z) - Estimation of High-Dimensional Markov-Switching VAR Models with an
Approximate EM Algorithm [4.069325369211861]
Regime shifts in high-dimensional time series arise naturally in many applications to finance.
We propose an EM algorithm for Markov-switching models that leads to efficient computation and investigation of the resulting parameter estimates.
We establish the consistency of the proposed EM algorithm in high dimensions and investigate its performance via simulation studies.
arXiv Detail & Related papers (2022-10-14T01:55:02Z) - A novel multi-layer modular approach for real-time fuzzy-identification
of gravitational-wave signals [0.0]
We propose a novel layered framework for real-time detection of gravitational waves inspired by speech processing techniques.
The paper describes the basic concepts of the framework and the derivation of the first three layers.
Compared to more complex approaches, such as convolutional neural networks, our framework has lower accuracy.
arXiv Detail & Related papers (2022-06-13T09:48:38Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - ARISE: ApeRIodic SEmi-parametric Process for Efficient Markets without
Periodogram and Gaussianity Assumptions [91.3755431537592]
We present the ApeRI-miodic (ARISE) process for investigating efficient markets.
The ARISE process is formulated as an infinite-sum of some known processes and employs the aperiodic spectrum estimation.
In practice, we apply the ARISE function to identify the efficiency of real-world markets.
arXiv Detail & Related papers (2021-11-08T03:36:06Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.