論文の概要: WindowMixer: Intra-Window and Inter-Window Modeling for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2406.12921v2
- Date: Sat, 6 Jul 2024 15:14:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 01:10:12.819519
- Title: WindowMixer: Intra-Window and Inter-Window Modeling for Time Series Forecasting
- Title(参考訳): WindowMixer: 時系列予測のためのWindow内およびWindow間モデリング
- Authors: Quangao Liu, Ruiqi Li, Maowei Jiang, Wei Yang, Chen Liang, LongLong Pang, Zhuozhang Zou,
- Abstract要約: 時系列予測は、経済予測、天気予報、交通流分析、公衆衛生監視といった分野において重要である。
従来の手法はポイントツーポイントの関係をモデル化し、複雑な時間パターンをキャプチャする能力を制限する。
全MLPフレームワーク上に構築された WindowMixer モデルを紹介する。
- 参考スコア(独自算出の注目度): 15.578933029560309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting (TSF) is crucial in fields like economic forecasting, weather prediction, traffic flow analysis, and public health surveillance. Real-world time series data often include noise, outliers, and missing values, making accurate forecasting challenging. Traditional methods model point-to-point relationships, which limits their ability to capture complex temporal patterns and increases their susceptibility to noise.To address these issues, we introduce the WindowMixer model, built on an all-MLP framework. WindowMixer leverages the continuous nature of time series by examining temporal variations from a window-based perspective. It decomposes time series into trend and seasonal components, handling them individually. For trends, a fully connected (FC) layer makes predictions. For seasonal components, time windows are projected to produce window tokens, processed by Intra-Window-Mixer and Inter-Window-Mixer modules. The Intra-Window-Mixer models relationships within each window, while the Inter-Window-Mixer models relationships between windows. This approach captures intricate patterns and long-range dependencies in the data.Experiments show WindowMixer consistently outperforms existing methods in both long-term and short-term forecasting tasks.
- Abstract(参考訳): 時系列予測(TSF)は、経済予測、天気予報、交通流分析、公衆衛生監視などの分野で重要である。
実世界の時系列データには、しばしばノイズ、外れ値、欠落値が含まれており、正確な予測は困難である。
従来の手法では、複雑な時間パターンをキャプチャし、ノイズに対する感受性を高める能力を制限するポイント・ツー・ポイント関係をモデル化しており、これらの問題に対処するため、全MLPフレームワーク上に構築された WindowMixer モデルを導入している。
WindowMixerは、時間的変動をウィンドウベースの観点から調べることで、時系列の連続的な性質を活用する。
時系列をトレンドと季節的なコンポーネントに分解し、個別に扱う。
トレンドでは、完全に接続された(FC)層が予測を行う。
季節的なコンポーネントについては、ウィンドウトークンを生成するために時間ウィンドウが投影され、Window-MixerとInter-Window-Mixerモジュールによって処理される。
Window-Mixerはウィンドウ内の関係をモデル化し、Inter-Window-Mixerはウィンドウ間の関係をモデル化する。
実験により、WindowMixerは長期的な予測タスクと短期予測タスクの両方において、既存のメソッドを一貫して上回ります。
関連論文リスト
- TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
本稿では,時系列セグメントを埋め込み空間に独立に投影し,任意の長さで将来予測を自動回帰的に生成する自動回帰時系列予測器としてAutoTimesを提案する。
AutoTimesは、高度なLSMベースの予測装置と比較して、0.1%のトレーニング可能なパラメータと5倍以上のトレーニング/推論のスピードアップで最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series
Forecasting [13.410217680999459]
トランスフォーマーは、時系列の相互作用をキャプチャする能力のために時系列予測で人気を博している。
高メモリとコンピューティングの要求は、長期予測にとって重要なボトルネックとなる。
マルチ層パーセプトロン(MLP)モジュールからなる軽量ニューラルネットワークTSMixerを提案する。
論文 参考訳(メタデータ) (2023-06-14T06:26:23Z) - Time Series Forecasting via Semi-Asymmetric Convolutional Architecture
with Global Atrous Sliding Window [0.0]
本稿では,時系列予測の問題に対処するために提案手法を提案する。
現代のモデルのほとんどは、短い範囲の情報のみに焦点を当てており、時系列予測のような問題で致命的なものである。
パフォーマンス上のアドバンテージがあることを実験的に検証した3つの主要なコントリビューションを行います。
論文 参考訳(メタデータ) (2023-01-31T15:07:31Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
同じ時系列パターンの複雑な時系列パターンが時間によって異なる可能性があるため、トラフィックシリーズの予測は困難である。
このような時間的モデルは、時間的位置と時間的期間に関わらず、共有パラメータ空間を使用し、時間的相関は場所間で類似しており、常に時間にわたって保持するわけではないと仮定する。
サブテンポラリモデルにICDを意識したモデルをエンコードするフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T16:44:56Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Merlion: A Machine Learning Library for Time Series [73.46386700728577]
Merlionは時系列のためのオープンソースの機械学習ライブラリである。
モデルの統一インターフェースと、異常検出と予測のためのデータセットを備えている。
Merlionはまた、本番環境でのモデルのライブデプロイメントと再トレーニングをシミュレートするユニークな評価フレームワークも提供する。
論文 参考訳(メタデータ) (2021-09-20T02:03:43Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNNはシリーズ間の相関と時間的依存関係をキャプチャする。
畳み込みと逐次学習モジュールによって効果的に予測できる。
StemGNNの有効性を示すために、10の実世界のデータセットに関する広範な実験を実施します。
論文 参考訳(メタデータ) (2021-03-13T13:44:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。