M4Fog: A Global Multi-Regional, Multi-Modal, and Multi-Stage Dataset for Marine Fog Detection and Forecasting to Bridge Ocean and Atmosphere
- URL: http://arxiv.org/abs/2406.13317v1
- Date: Wed, 19 Jun 2024 08:11:07 GMT
- Title: M4Fog: A Global Multi-Regional, Multi-Modal, and Multi-Stage Dataset for Marine Fog Detection and Forecasting to Bridge Ocean and Atmosphere
- Authors: Mengqiu Xu, Ming Wu, Kaixin Chen, Yixiang Huang, Mingrui Xu, Yujia Yang, Yiqing Feng, Yiying Guo, Bin Huang, Dongliang Chang, Zhenwei Shi, Chuang Zhang, Zhanyu Ma, Jun Guo,
- Abstract summary: We present the most comprehensive marine fog detection and forecasting dataset to date, named M4Fog.
The dataset comprises 68,000 "superFog data cubes" along four dimensions: elements, latitude, longitude and time, with a temporal resolution of half an hour and a spatial resolution of 1 kilometer.
Considering practical applications, we have defined and explored three meaningful tracks with multi-metric evaluation systems.
- Score: 34.63172821289592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Marine fog poses a significant hazard to global shipping, necessitating effective detection and forecasting to reduce economic losses. In recent years, several machine learning (ML) methods have demonstrated superior detection accuracy compared to traditional meteorological methods. However, most of these works are developed on proprietary datasets, and the few publicly accessible datasets are often limited to simplistic toy scenarios for research purposes. To advance the field, we have collected nearly a decade's worth of multi-modal data related to continuous marine fog stages from four series of geostationary meteorological satellites, along with meteorological observations and numerical analysis, covering 15 marine regions globally where maritime fog frequently occurs. Through pixel-level manual annotation by meteorological experts, we present the most comprehensive marine fog detection and forecasting dataset to date, named M4Fog, to bridge ocean and atmosphere. The dataset comprises 68,000 "super data cubes" along four dimensions: elements, latitude, longitude and time, with a temporal resolution of half an hour and a spatial resolution of 1 kilometer. Considering practical applications, we have defined and explored three meaningful tracks with multi-metric evaluation systems: static or dynamic marine fog detection, and spatio-temporal forecasting for cloud images. Extensive benchmarking and experiments demonstrate the rationality and effectiveness of the construction concept for proposed M4Fog. The data and codes are available to whole researchers through cloud platforms to develop ML-driven marine fog solutions and mitigate adverse impacts on human activities.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Global atmospheric data assimilation with multi-modal masked autoencoders [20.776143147372427]
"EarthNet" is a multi-modal foundation model for data assimilation.
It learns to predict a global gap-filled atmospheric state solely from satellite observations.
It produces a global 0.16 degree reanalysis dataset of 3D atmospheric temperature and humidity.
arXiv Detail & Related papers (2024-07-16T13:15:51Z) - DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes [5.736700805381591]
Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets.
Here, we introduce the DeepExtremes database, tailored to map around heatwave and drought extreme impact.
It comprises over 40,000 spatially sampled small data cubes (i.e. minicubes) globally, with a spatial coverage of 2.5 by 2.5 km.
arXiv Detail & Related papers (2024-06-26T08:53:26Z) - Prediction of Vessel Arrival Time to Pilotage Area Using Multi-Data Fusion and Deep Learning [9.458664533786994]
This paper investigates the prediction of vessels' arrival time to the pilotage area using multi-data fusion and deep learning approaches.
Tests on two real-world data sets from Singapore have been conducted and the following promising results have been obtained.
arXiv Detail & Related papers (2024-03-15T02:25:04Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.