論文の概要: Tensor Decompositions and Adiabatic Quantum Computing for Discovering Practical Matrix Multiplication Algorithms
- arxiv url: http://arxiv.org/abs/2406.13412v1
- Date: Wed, 19 Jun 2024 10:05:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 20:12:53.173735
- Title: Tensor Decompositions and Adiabatic Quantum Computing for Discovering Practical Matrix Multiplication Algorithms
- Title(参考訳): 実用的な行列乗算アルゴリズムの探索のためのテンソル分解と断熱量子計算
- Authors: Valter Uotila,
- Abstract要約: 本稿では,実用的な行列乗算アルゴリズムの発見と,量子コンピュータ上での分解計算のための2つのアルゴリズムの開発に焦点をあてる。
アルゴリズムは高次非制約バイナリ最適化(HUBO)問題として表現される。
最大分解長よりも短い長さを固定することにより、全体最適化問題の解がより高速な行列乗算アルゴリズムが得られることを示す。
- 参考スコア(独自算出の注目度): 1.5540058359482858
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum computing and modern tensor-based computing have a strong connection, which is especially demonstrated by simulating quantum computations with tensor networks. The other direction is less studied: quantum computing is not often applied to tensor-based problems. Considering tensor decompositions, we focus on discovering practical matrix multiplication algorithms and develop two algorithms to compute decompositions on quantum computers. The algorithms are expressed as higher-order unconstrained binary optimization (HUBO) problems, which are translated into quadratic unconstrained binary optimization (QUBO) problems. Our first algorithm is decompositional to keep the optimization problem feasible for the current quantum devices. Starting from a suitable initial point, the algorithm discovers tensor decomposition corresponding to the famous Strassen matrix multiplication algorithm, utilizing the current quantum annealers. Since the decompositional algorithm does not guarantee minimal length for found tensor decompositions, we develop a holistic algorithm that can find fixed-length decompositions. Theoretically, by fixing a shorter length than the length for the best-known decomposition, we can ensure that the solution to the holistic optimization problem would yield faster matrix multiplication algorithms.
- Abstract(参考訳): 量子コンピューティングと現代のテンソルベースコンピューティングは強いつながりを持ち、特にテンソルネットワークで量子計算をシミュレートすることで実証されている。
量子コンピューティングはテンソルベースの問題には適用されない。
テンソル分解を考慮し、実用的な行列乗算アルゴリズムの発見と量子コンピュータ上での分解を計算する2つのアルゴリズムの開発に焦点をあてる。
アルゴリズムは高次非制約バイナリ最適化(HUBO)問題として表現され、二次非制約バイナリ最適化(QUBO)問題に変換される。
我々の最初のアルゴリズムは、現在の量子デバイスで最適化問題を実現するために分解的である。
適切な初期点から、このアルゴリズムは、現在の量子アニールを用いて、有名なストラッセン行列乗法に対応するテンソル分解を発見する。
分解アルゴリズムは、検出されたテンソル分解に対して最小長を保証しないので、固定長分解を見つけることができる包括的アルゴリズムを開発する。
理論的には、最もよく知られた分解の長さよりも短い長さを固定することで、全体最適化問題の解がより高速な行列乗算アルゴリズムをもたらすことを保証できる。
関連論文リスト
- Tensor networks based quantum optimization algorithm [0.0]
最適化において、よく知られた古典的アルゴリズムの1つは電力反復である。
我々はこの落とし穴を回避するために量子化を提案する。
我々の手法はインスタンス非依存となり、量子コンピューティングの枠組みの中でブラックボックス最適化に対処することができる。
論文 参考訳(メタデータ) (2024-04-23T13:49:11Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
量子アリーモト・ブラフトアルゴリズムをRamakrishnanらにより一般化する。
3つの量子系を持つ量子情報ボトルネックに対して,我々のアルゴリズムを適用した。
数値解析により,我々のアルゴリズムはアルゴリズムよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-19T00:06:11Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Solving the semidefinite relaxation of QUBOs in matrix multiplication
time, and faster with a quantum computer [0.20999222360659603]
いくつかの量子SDOソルバは、低精度な状態において高速化を提供する。
この事実を利用してアルゴリズムの精度への依存を指数関数的に改善する。
我々のアルゴリズムの量子実装は、$mathcalO left(ns + n1.5 cdot textpolylog left(n, | C |_F, frac1epsilon right)$の最悪の実行時間を示す。
論文 参考訳(メタデータ) (2023-01-10T23:12:05Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Quantum Algorithm For Estimating Eigenvalue [0.0]
与えられたエルミート行列の大きさで最大の固有値を推定するための量子アルゴリズムを提供する。
我々の量子プロシージャは、同じ問題を解決する古典的なアルゴリズムと比較して指数的なスピードアップを得ることができる。
論文 参考訳(メタデータ) (2022-11-11T13:02:07Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
本稿では,リッジ回帰モデルに基づく量子アルゴリズムを提案する。
提案アルゴリズムは幅広い応用範囲を持ち,提案アルゴリズムは他の量子アルゴリズムのサブルーチンとして利用することができる。
論文 参考訳(メタデータ) (2021-04-27T11:03:52Z) - Quantum algorithms for powering stable Hermitian matrices [0.7734726150561088]
行列パワーティング(英: Matrix Powering)は、線形代数における基本的な計算プリミティブである。
古典行列パワーリングアルゴリズムを高速化する2つの量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-15T12:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。