論文の概要: Quantum algorithms for powering stable Hermitian matrices
- arxiv url: http://arxiv.org/abs/2103.08329v1
- Date: Mon, 15 Mar 2021 12:20:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-08 02:18:33.212837
- Title: Quantum algorithms for powering stable Hermitian matrices
- Title(参考訳): 安定エルミート行列を駆動する量子アルゴリズム
- Authors: Guillermo Gonz\'alez, Rahul Trivedi, J. Ignacio Cirac
- Abstract要約: 行列パワーティング(英: Matrix Powering)は、線形代数における基本的な計算プリミティブである。
古典行列パワーリングアルゴリズムを高速化する2つの量子アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.7734726150561088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Matrix powering is a fundamental computational primitive in linear algebra.
It has widespread applications in scientific computing and engineering, and
underlies the solution of time-homogeneous linear ordinary differential
equations, simulation of discrete-time Markov chains, or discovering the
spectral properties of matrices with iterative methods. In this paper, we
investigate the possibility of speeding up matrix powering of sparse stable
Hermitian matrices on a quantum computer. We present two quantum algorithms
that can achieve speedup over the classical matrix powering algorithms -- (i)
an adaption of quantum-walk based fast forwarding algorithm (ii) an algorithm
based on Hamiltonian simulation. Furthermore, by mapping the N-bit parity
determination problem to a matrix powering problem, we provide no-go theorems
that limit the quantum speedups achievable in powering non-Hermitian matrices.
- Abstract(参考訳): 行列のパワーリングは線形代数における基本的な計算プリミティブである。
科学計算や工学に広く応用されており、時間同次線型常微分方程式の解、離散時間マルコフ連鎖のシミュレーション、あるいは反復法による行列のスペクトル特性の発見の基盤となっている。
本稿では,量子コンピュータ上でのスパース安定エルミート行列の行列パワー化の高速化の可能性を検討する。
古典行列パワーリングアルゴリズムを高速化する2つの量子アルゴリズムを提案する。
(i)量子ウォークに基づく高速転送アルゴリズムの適応
(ii)ハミルトンシミュレーションに基づくアルゴリズム。
さらに、nビットパリティ決定問題を行列動力問題にマッピングすることにより、非エルミート行列を駆動する量子スピードアップを制限できるno-go定理を与える。
関連論文リスト
- Tensor networks based quantum optimization algorithm [0.0]
最適化において、よく知られた古典的アルゴリズムの1つは電力反復である。
我々はこの落とし穴を回避するために量子化を提案する。
我々の手法はインスタンス非依存となり、量子コンピューティングの枠組みの中でブラックボックス最適化に対処することができる。
論文 参考訳(メタデータ) (2024-04-23T13:49:11Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
我々は、von-Neumann方程式を線形化するための一般的なフレームワークを開発し、量子シミュレーションに適した形でレンダリングする。
フォン・ノイマン方程式のこれらの線型化のうちの1つは、状態ベクトルが密度行列の列重ね元となる標準的な場合に対応することを示す。
密度行列の力学をシミュレートする量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-14T23:08:51Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Quantum Algorithm For Estimating Eigenvalue [0.0]
与えられたエルミート行列の大きさで最大の固有値を推定するための量子アルゴリズムを提供する。
我々の量子プロシージャは、同じ問題を解決する古典的なアルゴリズムと比較して指数的なスピードアップを得ることができる。
論文 参考訳(メタデータ) (2022-11-11T13:02:07Z) - A quantum algorithm for solving eigenproblem of the Laplacian matrix of
a fully connected weighted graph [4.045204834863644]
完全連結重み付きグラフのラプラシア行列の固有確率を解くための効率的な量子アルゴリズムを提案する。
具体的には,ブロック符号化フレームワークに基づく最適ハミルトンシミュレーション手法を採用する。
また、このアルゴリズムは対称(非対称)正規化ラプラス行列の固有確率を解くために拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-03-28T02:24:08Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
本稿では,「Sender-Receiver」モデルを用いた行列演算のための量子アルゴリズムを提案する。
これらの量子プロトコルは、他の量子スキームのサブルーチンとして使用できる。
論文 参考訳(メタデータ) (2022-02-10T08:12:20Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
制約のないバイナリ最適化の問題を解決するために,光コヒーレントIsingマシンにヒントを得たアルゴリズムを提案する。
提案アルゴリズムを既存のPUBOアルゴリズムに対してベンチマークし,その優れた性能を観察する。
タンパク質の折り畳み問題や量子化学問題へのアルゴリズムの適用は、PUBO問題による電子構造問題の近似の欠点に光を当てる。
論文 参考訳(メタデータ) (2021-06-24T16:39:31Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum Algorithms for Estimating Physical Quantities using
Block-Encodings [0.30458514384586405]
我々は,n時間相関関数,局所的および非局所的状態密度,動的線形応答関数を推定するための量子アルゴリズムを提案する。
すべてのアルゴリズムはブロックエンコーディング(英語版)に基づいており、量子コンピュータ上の任意の非ユニタリな組み合わせを操作する技術である。
論文 参考訳(メタデータ) (2020-04-14T23:15:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。