論文の概要: Tensor networks based quantum optimization algorithm
- arxiv url: http://arxiv.org/abs/2404.15048v1
- Date: Tue, 23 Apr 2024 13:49:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 13:42:03.375230
- Title: Tensor networks based quantum optimization algorithm
- Title(参考訳): テンソルネットワークに基づく量子最適化アルゴリズム
- Authors: V. Akshay, Ar. Melnikov, A. Termanova, M. R. Perelshtein,
- Abstract要約: 最適化において、よく知られた古典的アルゴリズムの1つは電力反復である。
我々はこの落とし穴を回避するために量子化を提案する。
我々の手法はインスタンス非依存となり、量子コンピューティングの枠組みの中でブラックボックス最適化に対処することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In optimization, one of the well-known classical algorithms is power iterations. Simply stated, the algorithm recovers the dominant eigenvector of some diagonalizable matrix. Since numerous optimization problems can be formulated as an eigenvalue/eigenvector search, this algorithm features wide applicability. Operationally, power iterations consist of performing repeated matrix-to-vector multiplications (or MatVec) followed by a renormilization step in order to converge to the dominant eigenvalue/eigenvector. However, classical realizations, including novel tensor network based approaches, necessitate an exponential scaling for the algorithm's run-time. In this paper, we propose a quantum realiziation to circumvent this pitfall. Our methodology involves casting low-rank representations; Matrix Product Operators (MPO) for matrices and Matrix Product States (MPS) for vectors, into quantum circuits. Specifically, we recover a unitary approximation by variationally minimizing the Frobenius distance between a target MPO and an MPO ansatz wherein the tensor cores are constrained to unitaries. Such an unitary MPO can easily be implemented as a quantum circuit with the addition of ancillary qubits. Thereafter, with appropriate initialization and post-selection on the ancillary space, we realize a single iteration of the classical algorithm. With our proposed methodology, power iterations can be realized entirely on a quantum computer via repeated, static circuit blocks; therefore, a run-time advantage can indeed be guaranteed. Moreover, by exploiting Riemannian optimization and cross-approximation techniques, our methodology becomes instance agnostic and thus allows one to address black-box optimization within the framework of quantum computing.
- Abstract(参考訳): 最適化において、よく知られた古典的アルゴリズムの1つは電力反復である。
簡単に言えば、アルゴリズムはいくつかの対角化可能な行列の優越的固有ベクトルを復元する。
多くの最適化問題は固有値/固有ベクトル探索として定式化できるため、このアルゴリズムは適用性が高い。
運用上、パワーイテレーションは行列-ベクトル乗法(Match-to-vector multiplications, MatVec)を繰り返すことで構成され、その後、支配的固有値/固有ベクトルに収束するために再ノルミ化ステップが続く。
しかし、新しいテンソルネットワークベースのアプローチを含む古典的な実現には、アルゴリズムの実行時間に対する指数的スケーリングが必要である。
本稿では,この落とし穴を回避するための量子化を提案する。
我々の手法は低ランク表現、行列行列演算子(MPO)、ベクトル行列行列積状態(MPS)を量子回路にキャストすることである。
具体的には、ターゲットMPOとMPOアンサッツ間のフロベニウス距離を変動的に最小化し、テンソルコアがユニタリに制約されるユニタリ近似を復元する。
このようなユニタリMPOは、Acillary qubitsを付加した量子回路として容易に実装できる。
その後、アシラリー空間上での適切な初期化とポストセレクションにより、古典的アルゴリズムの単一イテレーションを実現する。
提案手法により, 繰り返し静的回路ブロックを用いて, 量子コンピュータ上での電力繰り返しを完全に実現し, 実行時のアドバンテージを保証できる。
さらに、リーマン最適化とクロス近似技術を利用して、我々の手法はインスタンス非依存となり、量子コンピューティングの枠組みの中でブラックボックス最適化に対処することができる。
関連論文リスト
- Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
このアルゴリズムは古典的なハードウェア上で動作し、浅い正確な量子回路を見つける。
すべての回路は、適切なCPU時間と控えめなメモリ要求下で高い状態忠実性を達成する。
論文 参考訳(メタデータ) (2024-08-22T17:48:53Z) - Tensor Decompositions and Adiabatic Quantum Computing for Discovering Practical Matrix Multiplication Algorithms [1.5540058359482858]
本稿では,実用的な行列乗算アルゴリズムの発見と,量子コンピュータ上での分解計算のための2つのアルゴリズムの開発に焦点をあてる。
アルゴリズムは高次非制約バイナリ最適化(HUBO)問題として表現される。
最大分解長よりも短い長さを固定することにより、全体最適化問題の解がより高速な行列乗算アルゴリズムが得られることを示す。
論文 参考訳(メタデータ) (2024-06-19T10:05:57Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
本稿では,デジタルカウンセバティック量子最適化(DCQO)パラダイムを用いて,ポートフォリオ最適化のための高速なディジタル量子アルゴリズムを提案する。
提案手法は,アルゴリズムの回路深度要件を特に低減し,解の精度を向上し,現在の量子プロセッサに適している。
我々は,IonQトラップイオン量子コンピュータ上で最大20量子ビットを使用するプロトコルの利点を実験的に実証した。
論文 参考訳(メタデータ) (2023-08-29T17:53:08Z) - A doubly stochastic matrices-based approach to optimal qubit routing [0.0]
スワップマッピングは、SWAPゲートによって論理量子回路を等価な物理実装可能なものにマッピングする量子コンパイラ最適化である。
本研究では、置換行列の組み合わせとして定義される二重凸行列と呼ばれる構造を用いる。
提案アルゴリズムは,追加時間のコストで,アートアルゴリズムSABREの状態と比較して,大幅な深度低減を実現することができることを示す。
論文 参考訳(メタデータ) (2022-11-14T09:25:35Z) - Quantum Algorithm For Estimating Eigenvalue [0.0]
与えられたエルミート行列の大きさで最大の固有値を推定するための量子アルゴリズムを提供する。
我々の量子プロシージャは、同じ問題を解決する古典的なアルゴリズムと比較して指数的なスピードアップを得ることができる。
論文 参考訳(メタデータ) (2022-11-11T13:02:07Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,異なるアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
本稿では,リッジ回帰モデルに基づく量子アルゴリズムを提案する。
提案アルゴリズムは幅広い応用範囲を持ち,提案アルゴリズムは他の量子アルゴリズムのサブルーチンとして利用することができる。
論文 参考訳(メタデータ) (2021-04-27T11:03:52Z) - Quantum algorithms for spectral sums [50.045011844765185]
正半定値行列(PSD)のスペクトル和を推定するための新しい量子アルゴリズムを提案する。
本稿では, スペクトルグラフ理論における3つの問題に対して, アルゴリズムと手法が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-12T16:29:45Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。