論文の概要: Comparison of Open-Source and Proprietary LLMs for Machine Reading Comprehension: A Practical Analysis for Industrial Applications
- arxiv url: http://arxiv.org/abs/2406.13713v2
- Date: Fri, 06 Dec 2024 21:24:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:49:45.558571
- Title: Comparison of Open-Source and Proprietary LLMs for Machine Reading Comprehension: A Practical Analysis for Industrial Applications
- Title(参考訳): 機械読取理解のためのオープンソースLLMとプロプライエタリLLMの比較:産業応用のための実践的分析
- Authors: Mahaman Sanoussi Yahaya Alassan, Jessica López Espejel, Merieme Bouhandi, Walid Dahhane, El Hassane Ettifouri,
- Abstract要約: 大規模言語モデル(LLM)は、最近、様々な自然言語処理(NLP)アプリケーションで顕著な性能を示した。
本稿では,オープンソースLLMとプロプライエタリモデルの比較分析を行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) have recently demonstrated remarkable performance in various Natural Language Processing (NLP) applications, such as sentiment analysis, content generation, and personalized recommendations. Despite their impressive capabilities, there remains a significant need for systematic studies concerning the practical application of LLMs in industrial settings, as well as the specific requirements and challenges related to their deployment in these contexts. This need is particularly critical for Machine Reading Comprehension (MCR), where factual, concise, and accurate responses are required. To date, most MCR rely on Small Language Models (SLMs) or Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM). This trend is evident in the SQuAD2.0 rankings on the Papers with Code table. This article presents a comparative analysis between open-source LLMs and proprietary models on this task, aiming to identify light and open-source alternatives that offer comparable performance to proprietary models.
- Abstract(参考訳): 大規模言語モデル(LLM)は最近、感情分析、コンテンツ生成、パーソナライズされたレコメンデーションなど、様々な自然言語処理(NLP)アプリケーションで顕著なパフォーマンスを示している。
その印象的な能力にもかかわらず、産業環境におけるLLMの実践的適用に関する体系的な研究や、これらの状況におけるそれらの展開に関する具体的な要件や課題は、依然として重要な研究が必要である。
このニーズは特にMCR(Machine Reading Comprehension)において重要である。
現在、ほとんどのMCRはLong Short-Term Memory (LSTM)のようなSmall Language Models (SLM)またはRecurrent Neural Networks (RNN)に依存している。
この傾向はPapers with CodeのSQuAD2.0ランキングで明らかである。
本稿では,オープンソース LLM とプロプライエタリモデルの比較分析を行い,プロプライエタリモデルに匹敵するパフォーマンスを提供する軽量およびオープンソース代替品の同定を目的とする。
関連論文リスト
- A Framework for Using LLMs for Repository Mining Studies in Empirical Software Engineering [12.504438766461027]
大規模言語モデル(LLM)は、ソフトウェアリポジトリを分析する革新的な方法を提供することで、ソフトウェア工学(SE)を変革した。
私たちの研究は、PRIMES(Prompt Refinement and Insights for Mining Empirical Software repository)というフレームワークをまとめています。
この結果,PRIMESの標準化により,LLMを用いた研究の信頼性と精度が向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-15T06:08:57Z) - A Survey of Small Language Models [104.80308007044634]
小言語モデル (SLM) は, 計算資源の最小化による言語タスクの効率化と性能の向上により, ますます重要になってきている。
本稿では,SLMのアーキテクチャ,トレーニング技術,モデル圧縮技術に着目した総合的な調査を行う。
論文 参考訳(メタデータ) (2024-10-25T23:52:28Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry [2.4244694855867275]
大規模言語モデル(LLM)は、大量のテキストデータから貴重な洞察を抽出するための強力なツールとして登場した。
本研究では,TripAdvisor 投稿から旅行客のニーズを抽出するための LLM の比較分析を行った。
特にMistral 7Bは,大規模クローズドモデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-04-27T18:28:10Z) - Towards Pareto Optimal Throughput in Small Language Model Serving [4.497936996651617]
SLM(Small Language Models)は、リソース制約のあるユーザに対して、新たな機会を提供する。
本研究では,SLM推論を性能およびエネルギーレベルで評価するための一連の実験について述べる。
論文 参考訳(メタデータ) (2024-04-04T10:45:07Z) - A Review of Multi-Modal Large Language and Vision Models [1.9685736810241874]
大規模言語モデル(LLM)が研究と応用の焦点として登場した。
近年、LLMはマルチモーダル大言語モデル(MM-LLM)に拡張されている。
本稿では,近年のMM-LLMとともに,マルチモーダル機能を有するLLMの現状を概観する。
論文 参考訳(メタデータ) (2024-03-28T15:53:45Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
本調査は,データアノテーションと合成のための大規模言語モデルの有用性に焦点を当てる。
LLMがアノテートできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションと合成にLLMを使用する際の主な課題と制限に関する詳細な議論を含む。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models [11.845239346943067]
パラメータ効率のよい微調整(PEFT)は、大規模言語モデル(LLM)をタスク固有のデータに効率的に専門化するための有望なアプローチである。
本研究は,PEFTと量子化を組み合わせることで,より大きなLCMをチューニングし,メモリ使用量を大幅に削減する可能性を明らかにする。
論文 参考訳(メタデータ) (2023-08-21T04:31:06Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。