論文の概要: Evaluating the Efficacy of Open-Source LLMs in Enterprise-Specific RAG Systems: A Comparative Study of Performance and Scalability
- arxiv url: http://arxiv.org/abs/2406.11424v1
- Date: Mon, 17 Jun 2024 11:22:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 15:11:33.141664
- Title: Evaluating the Efficacy of Open-Source LLMs in Enterprise-Specific RAG Systems: A Comparative Study of Performance and Scalability
- Title(参考訳): エンタープライズ向けRAGシステムにおけるオープンソースLLMの有効性評価:性能とスケーラビリティの比較検討
- Authors: Gautam B, Anupam Purwar,
- Abstract要約: 本稿では,オープンソースの大規模言語モデル(LLM)とその検索・拡張生成(RAG)タスクへの応用について述べる。
この結果から,オープンソースのLCMと効果的な埋め込み技術が組み合わさって,RAGシステムの精度と効率を大幅に向上させることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents an analysis of open-source large language models (LLMs) and their application in Retrieval-Augmented Generation (RAG) tasks, specific for enterprise-specific data sets scraped from their websites. With the increasing reliance on LLMs in natural language processing, it is crucial to evaluate their performance, accessibility, and integration within specific organizational contexts. This study examines various open-source LLMs, explores their integration into RAG frameworks using enterprise-specific data, and assesses the performance of different open-source embeddings in enhancing the retrieval and generation process. Our findings indicate that open-source LLMs, combined with effective embedding techniques, can significantly improve the accuracy and efficiency of RAG systems, offering a viable alternative to proprietary solutions for enterprises.
- Abstract(参考訳): 本稿では,オープンソースの大規模言語モデル(LLM)とそのRAGタスクへの応用について述べる。
自然言語処理におけるLLMへの依存度が高まっているため、そのパフォーマンス、アクセシビリティ、特定の組織コンテキストにおける統合性を評価することが不可欠である。
本研究では,様々なオープンソース LLM について検討し,企業固有のデータを用いたRAG フレームワークへの統合について検討し,検索・生成プロセスの強化における各種オープンソース埋め込みの性能評価を行う。
この結果から,オープンソースのLCMと効果的な埋め込み技術が組み合わさって,RAGシステムの精度と効率を大幅に向上させ,企業の独自ソリューションに代わる実現可能な代替手段を提供することが示唆された。
関連論文リスト
- Experiences from Using LLMs for Repository Mining Studies in Empirical Software Engineering [12.504438766461027]
大規模言語モデル(LLM)は、ソフトウェアリポジトリを分析する革新的な方法を提供することで、ソフトウェア工学(SE)を変革した。
私たちの研究は、PRIMES(Prompt Refinement and Insights for Mining Empirical Software repository)というフレームワークをまとめています。
この結果,PRIMESの標準化により,LLMを用いた研究の信頼性と精度が向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-15T06:08:57Z) - Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs [64.9693406713216]
RAGシステムの有効性に寄与する内部メカニズムは未解明のままである。
実験の結果,複数のコアグループの専門家がRAG関連行動に主に関与していることが判明した。
本稿では,専門家の活性化を通じてRAGの効率性と有効性を高めるためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-10-20T16:08:54Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Benchmarking Open-Source Language Models for Efficient Question Answering in Industrial Applications [0.0]
大規模言語モデル (LLM) は質問応答 (QA) のようなタスクにおいて顕著な機能を示した。
本稿では,オープンソース LLM とオープンソースでない LLM を比較し,質問応答の課題について総合的なベンチマーク研究を行う。
論文 参考訳(メタデータ) (2024-06-19T17:11:51Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Assessing the Performance of Chinese Open Source Large Language Models in Information Extraction Tasks [12.400599440431188]
自然言語処理(NLP)における情報抽出(IE)の役割
英語IEタスクに焦点をあてた最近の実験は、LLM(Large Language Models)が最適性能を達成する上で直面する課題に光を当てている。
論文 参考訳(メタデータ) (2024-06-04T08:00:40Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Which is better? Exploring Prompting Strategy For LLM-based Metrics [6.681126871165601]
本稿では,DSBA が提案する Prompting Large Language Models を Explainable Metrics 共有タスクとして記述する。
BLEUやROUGEのような従来の類似性に基づくメトリクスは、人間の評価に悪影響を与えており、オープンな生成タスクには適していない。
論文 参考訳(メタデータ) (2023-11-07T06:36:39Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。