Inevitable Negativity: Additivity Commands Negative Quantum Channel Entropy
- URL: http://arxiv.org/abs/2406.13823v2
- Date: Mon, 11 Nov 2024 02:51:23 GMT
- Title: Inevitable Negativity: Additivity Commands Negative Quantum Channel Entropy
- Authors: Gilad Gour, Doyeong Kim, Takla Nateeboon, Guy Shemesh, Goni Yoeli,
- Abstract summary: Quantum channels represent a broad spectrum of operations crucial to quantum information theory.
This paper establishes a rigorous framework for assessing the uncertainty in both classical and quantum channels.
- Score: 2.7961972519572442
- License:
- Abstract: Quantum channels represent a broad spectrum of operations crucial to quantum information theory, encompassing everything from the transmission of quantum information to the manipulation of various resources. In the domain of states, the concept of majorization serves as a fundamental tool for comparing the uncertainty inherent in both classical and quantum systems. This paper establishes a rigorous framework for assessing the uncertainty in both classical and quantum channels. By employing a specific class of superchannels, we introduce and elucidate three distinct approaches to channel majorization: constructive, axiomatic, and operational. Intriguingly, these methodologies converge to a consistent ordering. This convergence not only provides a robust basis for defining entropy functions for channels but also clarifies the interpretation of entropy in this broader context. Most notably, our findings reveal that any viable entropy function for quantum channels must assume negative values, thereby challenging traditional notions of entropy.
Related papers
- Quantum Conditional Entropies [7.988085110283119]
We introduce a comprehensive family of conditional entropies that reveals a unified structure underlying all previously studied forms of quantum conditional R'enyi entropies.
This new family satisfies a range of desiderata, including data processing inequalities, additivity under tensor products, duality relations, chain rules, concavity or convexity, and various parameter monotonicity relations.
We expect this family of entropies, along with our generalized chain rules, to find applications in quantum cryptography and information theory.
arXiv Detail & Related papers (2024-10-29T12:03:10Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Optimized quantum f-divergences [6.345523830122166]
I introduce the optimized quantum f-divergence as a related generalization of quantum relative entropy.
I prove that it satisfies the data processing inequality, and the method of proof relies upon the operator Jensen inequality.
One benefit of this approach is that there is now a single, unified approach for establishing the data processing inequality for the Petz--Renyi and sandwiched Renyi relative entropies.
arXiv Detail & Related papers (2021-03-31T04:15:52Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Improved tripartite uncertainty relation with quantum memory [5.43508370077166]
Uncertainty principle is a striking and fundamental feature in quantum mechanics.
In quantum information theory, this uncertainty principle is popularly formulized in terms of entropy.
We present an improvement of tripartite quantum-memory-assisted entropic uncertainty relation.
arXiv Detail & Related papers (2020-04-09T03:54:51Z) - Distribution of quantum coherence and quantum phase transition in the
Ising system [2.318473106845779]
Quantifying quantum coherence of a given system plays an important role in quantum information science.
We propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence.
arXiv Detail & Related papers (2020-01-29T07:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.