論文の概要: A large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations
- arxiv url: http://arxiv.org/abs/2406.13844v3
- Date: Fri, 21 Feb 2025 11:20:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:07:38.323045
- Title: A large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations
- Title(参考訳): エキスパートセグメンテーションを用いた大規模マルチセンター乳癌DCE-MRIベンチマークデータセット
- Authors: Lidia Garrucho, Kaisar Kushibar, Claire-Anne Reidel, Smriti Joshi, Richard Osuala, Apostolia Tsirikoglou, Maciej Bobowicz, Javier del Riego, Alessandro Catanese, Katarzyna Gwoździewicz, Maria-Laura Cosaka, Pasant M. Abo-Elhoda, Sara W. Tantawy, Shorouq S. Sakrana, Norhan O. Shawky-Abdelfatah, Amr Muhammad Abdo-Salem, Androniki Kozana, Eugen Divjak, Gordana Ivanac, Katerina Nikiforaki, Michail E. Klontzas, Rosa García-Dosdá, Meltem Gulsun-Akpinar, Oğuz Lafcı, Ritse Mann, Carlos Martín-Isla, Fred Prior, Kostas Marias, Martijn P. A. Starmans, Fredrik Strand, Oliver Díaz, Laura Igual, Karim Lekadir,
- Abstract要約: 原発性腫瘍および非質量強調領域の鑑別を含む,T1強調ダイナミックコントラスト強調MRI症例1506例のデータセットを報告する。
このデータセットは、The Cancer Imaging Archive(TCIA)の4つのコレクションからの画像データを統合する。
データセットには49の調和した臨床および人口統計変数と、注釈付きデータに基づいてトレーニングされたベースラインnnU-Netモデルのための事前トレーニングされた重みが含まれている。
- 参考スコア(独自算出の注目度): 25.560722967959343
- License:
- Abstract: Artificial Intelligence (AI) research in breast cancer Magnetic Resonance Imaging (MRI) faces challenges due to limited expert-labeled segmentations. To address this, we present a multicenter dataset of 1506 pre-treatment T1-weighted dynamic contrast-enhanced MRI cases, including expert annotations of primary tumors and non-mass-enhanced regions. The dataset integrates imaging data from four collections in The Cancer Imaging Archive (TCIA), where only 163 cases with expert segmentations were initially available. To facilitate the annotation process, a deep learning model was trained to produce preliminary segmentations for the remaining cases. These were subsequently corrected and verified by 16 breast cancer experts (averaging 9 years of experience), creating a fully annotated dataset. Additionally, the dataset includes 49 harmonized clinical and demographic variables, as well as pre-trained weights for a baseline nnU-Net model trained on the annotated data. This resource addresses a critical gap in publicly available breast cancer datasets, enabling the development, validation, and benchmarking of advanced deep learning models, thus driving progress in breast cancer diagnostics, treatment response prediction, and personalized care.
- Abstract(参考訳): 乳がんの磁気共鳴イメージング(MRI)における人工知能(AI)の研究は、専門家による限られたセグメンテーションのために課題に直面している。
そこで本研究では,T1強調ダイナミックコントラスト強調MRI症例1506例の多施設間データセットについて報告する。
このデータセットは、The Cancer Imaging Archive(TCIA)の4つのコレクションからの画像データを統合する。
アノテーション処理を容易にするため,ディープラーニングモデルを訓練し,残りの症例に対する予備的セグメンテーションを作成した。
その後、16人の乳がん専門家(9年間の経験を持つ)によって修正され、検証され、完全な注釈付きデータセットが作成されました。
さらに、データセットには49の調和された臨床および人口統計変数と、アノテーション付きデータに基づいてトレーニングされたベースラインnnU-Netモデルの事前トレーニングされた重みが含まれている。
このリソースは、公開されている乳がんデータセットにおける重要なギャップに対処し、高度なディープラーニングモデルの開発、検証、ベンチマークを可能にし、乳がん診断、治療反応予測、パーソナライズドケアの進展を促進する。
関連論文リスト
- Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challengeは、23の臨床的に関連する大動脈枝と領域に注釈付き100 CTA巻の最初のデータセットを導入した。
本稿では,トップパフォーマンスアルゴリズムの課題設計,データセットの詳細,評価指標,詳細な分析について述べる。
論文 参考訳(メタデータ) (2025-02-07T21:09:05Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
自己教師型でMRI表現を効果的に学習するためのクロスシリーズ・マスキング(CSM)戦略
メソッドは、パブリックデータセットと社内データセットの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-10T10:32:09Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-treatment MRI [5.725734864357991]
治療後のグリオーマMRIに対する2024 Brain tumor (BraTS)チャレンジは、最先端の自動セグメンテーションモデルのコミュニティ標準とベンチマークを提供する。
競合他社は、4つの異なる腫瘍サブリージョンを予測するために、自動セグメンテーションモデルを開発する。
モデルは別個の検証とテストデータセットで評価される。
論文 参考訳(メタデータ) (2024-05-28T17:07:55Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
自動生成臓器マスクを利用する新しい解剖ガイドセグメンテーションフレームワークを開発した。
提案手法を2つのCRCセグメンテーションデータセット上で広範囲に評価する。
論文 参考訳(メタデータ) (2023-10-07T03:22:06Z) - CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark
Model for Rectal Cancer Segmentation [8.728236864462302]
CT画像の直腸癌セグメンテーションは、タイムリーな臨床診断、放射線治療、経過観察において重要な役割を担っている。
これらの障害は直腸の複雑な解剖学的構造と直腸癌の鑑別診断の困難から生じる。
これらの課題に対処するため,本研究では,正常直腸と癌直腸の両方にピクセルレベルのアノテーションを付加した,新しい大規模直腸癌CT画像データセットCAREを導入する。
また,U-SAMと命名された新しい癌病変セグメンテーションベンチマークモデルを提案する。
このモデルは、迅速な情報を取り入れることで、腹部器官の複雑な解剖学的構造によって引き起こされる課題に対処するように設計されている。
論文 参考訳(メタデータ) (2023-08-16T10:51:27Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。