論文の概要: INFusion: Diffusion Regularized Implicit Neural Representations for 2D and 3D accelerated MRI reconstruction
- arxiv url: http://arxiv.org/abs/2406.13895v1
- Date: Wed, 19 Jun 2024 23:51:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:56:21.994346
- Title: INFusion: Diffusion Regularized Implicit Neural Representations for 2D and 3D accelerated MRI reconstruction
- Title(参考訳): InFusion: Diffusion Regularized Implicit Neural Representation for 2D and 3DAccelerated MRI reconstruction (特集:MRI)
- Authors: Yamin Arefeen, Brett Levac, Zach Stoebner, Jonathan Tamir,
- Abstract要約: Inlicit Neural Representations (INRs) は、MRI(MRI)の取得を加速するための学習ベースのアプローチである。
本研究は、アンダーサンプルMR測定からINRの最適化を規則化する手法であるINFusionを提案する。
また,大規模な3次元MRデータセットにINRを適用可能な拡散正則化を用いたハイブリッド3次元アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representations (INRs) are a learning-based approach to accelerate Magnetic Resonance Imaging (MRI) acquisitions, particularly in scan-specific settings when only data from the under-sampled scan itself are available. Previous work demonstrates that INRs improve rapid MRI through inherent regularization imposed by neural network architectures. Typically parameterized by fully-connected neural networks, INRs support continuous image representations by taking a physical coordinate location as input and outputting the intensity at that coordinate. Previous work has applied unlearned regularization priors during INR training and have been limited to 2D or low-resolution 3D acquisitions. Meanwhile, diffusion based generative models have received recent attention as they learn powerful image priors decoupled from the measurement model. This work proposes INFusion, a technique that regularizes the optimization of INRs from under-sampled MR measurements with pre-trained diffusion models for improved image reconstruction. In addition, we propose a hybrid 3D approach with our diffusion regularization that enables INR application on large-scale 3D MR datasets. 2D experiments demonstrate improved INR training with our proposed diffusion regularization, and 3D experiments demonstrate feasibility of INR training with diffusion regularization on 3D matrix sizes of 256 by 256 by 80.
- Abstract(参考訳): Inlicit Neural Representations(INR)は、MRI(MRI)の取得を加速する学習ベースのアプローチである。
以前の研究では、INRはニューラルネットワークアーキテクチャによって課される固有の正規化を通じて、高速MRIを改善することが示されている。
通常、完全に接続されたニューラルネットワークによってパラメータ化され、INRは物理座標位置を入力とし、その座標に強度を出力することで、連続した画像表現をサポートする。
これまでの作業では、INRトレーニング中に未学習の正規化に先立って適用され、2Dまたは低解像度の3D取得に限られていた。
一方、拡散に基づく生成モデルは、測定モデルから分離された強力な画像の先行性を学ぶことで近年注目されている。
本研究は,インフュージョン(InFusion)を提案する。インフュージョン(InFusion)は,インフュージョン(INRs)のアンダーサンプルMR測定から,画像再構成を改善するための事前学習拡散モデルを用いた最適化手法である。
さらに,大規模な3次元MRデータセットにINRを適用可能な拡散正則化を用いたハイブリッド3次元手法を提案する。
2次元実験は, 提案した拡散正則化によるINRトレーニングの改善を示し, 3次元実験は, 256×80の3次元行列サイズでの拡散正則化によるINRトレーニングの実現可能性を示した。
関連論文リスト
- Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Inlicit Neuraltruth (INR) は逆問題を解決するための強力なDLベースのツールとして登場した。
本研究では,高度にアンサンプされたk空間データから動的MRI再構成を改善するためのINRに基づく手法を提案する。
提案したINRは、ダイナミックMRI画像を暗黙の関数として表現し、それらをニューラルネットワークにエンコードする。
論文 参考訳(メタデータ) (2022-12-31T05:43:21Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
暗黙的神経表現(INR)は、物体の内部連続性を学ぶための新しいディープラーニングパラダイムとして登場した。
提案手法は,アーティファクトやノイズのエイリアスを抑えることにより,既存の手法よりも優れる。
良質な結果と走査特異性により,提案手法は並列MRIのデータ取得をさらに加速させる可能性を秘めている。
論文 参考訳(メタデータ) (2022-10-19T10:16:03Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
本稿では,大規模同変畳み込みニューラルネットワークを用いたニューラルネットワークの近位演算子をモデル化する。
我々のアプローチは、同じメモリ制約下での最先端のアンロールニューラルネットワークに対する強力な改善を示す。
論文 参考訳(メタデータ) (2022-04-21T23:29:52Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - MRI Super-Resolution with GAN and 3D Multi-Level DenseNet: Smaller,
Faster, and Better [16.65044022241517]
高分解能(HR)磁気共鳴画像(MRI)は、臨床応用において診断に重要な詳細な解剖情報を提供する。
HR MRIは通常、長時間のスキャン、空間被覆の小さい、信号対雑音比(SNR)のコストがかかる。
近年の研究では、ディープ畳み込みニューラルネットワーク(CNN)を用いて、単一画像超解像(SISR)アプローチにより、低解像度(LR)入力からHRジェネリックイメージを復元できることが示されている。
論文 参考訳(メタデータ) (2020-03-02T22:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。