論文の概要: Enhancing multivariate post-processed visibility predictions utilizing CAMS forecasts
- arxiv url: http://arxiv.org/abs/2406.14159v1
- Date: Thu, 20 Jun 2024 09:57:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:21:16.586806
- Title: Enhancing multivariate post-processed visibility predictions utilizing CAMS forecasts
- Title(参考訳): CAMS予測を用いた多変量後可視性予測の強化
- Authors: Mária Lakatos, Sándor Baran,
- Abstract要約: 天気予報には視界のアンサンブル予測が組み込まれている。
予測の信頼性と精度を高めるために、後処理が推奨される。
本研究は, 後処理後の予測が, 生・気候予測よりもかなり優れていることを確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In our contemporary era, meteorological weather forecasts increasingly incorporate ensemble predictions of visibility - a parameter of great importance in aviation, maritime navigation, and air quality assessment, with direct implications for public health. However, this weather variable falls short of the predictive accuracy achieved for other quantities issued by meteorological centers. Therefore, statistical post-processing is recommended to enhance the reliability and accuracy of predictions. By estimating the predictive distributions of the variables with the aid of historical observations and forecasts, one can achieve statistical consistency between true observations and ensemble predictions. Visibility observations, following the recommendation of the World Meteorological Organization, are typically reported in discrete values; hence, the predictive distribution of the weather quantity takes the form of a discrete parametric law. Recent studies demonstrated that the application of classification algorithms can successfully improve the skill of such discrete forecasts; however, a frequently emerging issue is that certain spatial and/or temporal dependencies could be lost between marginals. Based on visibility ensemble forecasts of the European Centre for Medium-Range Weather Forecasts for 30 locations in Central Europe, we investigate whether the inclusion of Copernicus Atmosphere Monitoring Service (CAMS) predictions of the same weather quantity as an additional covariate could enhance the skill of the post-processing methods and whether it contributes to the successful integration of spatial dependence between marginals. Our study confirms that post-processed forecasts are substantially superior to raw and climatological predictions, and the utilization of CAMS forecasts provides a further significant enhancement both in the univariate and multivariate setup.
- Abstract(参考訳): 現代の気象予報では、航空、海洋航法、大気質評価において非常に重要なパラメータであり、公衆衛生に直接的な影響を及ぼす、可視性のアンサンブル予測がますます取り入れられている。
しかし、この気象変動は気象センターが発行する他の量の予測精度に劣っている。
したがって,予測の信頼性と精度を高めるため,統計的後処理が推奨される。
歴史的観測と予測の助けを借りて変数の予測分布を推定することにより、真の観測とアンサンブル予測の間の統計的整合性を達成することができる。
世界気象機関 (World Meteorological Organization) の勧告に従い、可視性観測は一般的に離散的な値で報告されるため、気象量の予測分布は離散的なパラメトリック法則の形を取る。
近年の研究では、分類アルゴリズムの適用によって、このような離散的な予測のスキルが向上することが実証されているが、多くの場合、空間的および時間的依存関係が限界間で失われる可能性がある。
中央ヨーロッパ30カ所の欧州中レージ気象予報センターの可視的アンサンブル予測に基づいて,コペルニクス大気モニタリングサービス(CAMS)が追加共変量と同一の気象量の予測を行うことにより,後処理手法のスキルが向上し,それが縁間の空間依存性の良好な統合に寄与するかどうかを検討する。
本研究は,後処理後の予測が生・気候予報よりもかなり優れていることを確認し,CAMS予測の利用により,単変量および多変量設定の双方において,さらに顕著な改善が期待できることを示す。
関連論文リスト
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - Statistical post-processing of visibility ensemble forecasts [0.0]
局所的,半局所的,局所的に訓練された比例確率対数回帰(POLR)と多層パーセプトロン(MLP)ニューラルネットワーク分類器の予測性能について検討した。
気候学的な予測は生のアンサンブルを広いマージンで上回るが、後処理により予測スキルが大幅に向上することを示した。
論文 参考訳(メタデータ) (2023-05-24T16:41:36Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Improving seasonal forecast using probabilistic deep learning [1.1988695717766686]
我々は,季節予測能力と予測診断力を高めるための確率論的ディープニューラルネットワークモデルを開発した。
気候シミュレーションで符号化された複雑な物理的関係を活用することで、我々のモデルは好ましい決定論的および確率論的スキルを示す。
季節変動の支配的なモードであるエルニーニョ/南部の振動が、世界の季節予測可能性をどのように調節するかについて、より決定的な答えを与える。
論文 参考訳(メタデータ) (2020-10-27T21:02:26Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z) - Machine learning for total cloud cover prediction [0.0]
本稿では,多層パーセプトロン(MLP)ニューラルネットワーク,勾配促進機(GBM)およびランダムフォレスト(RF)法を用いた後処理の性能について検討する。
生のアンサンブルと比較して、全ての校正法は予測スキルを著しく向上させる。
RFモデルは予測性能が最小となる一方、POLRとGBMのアプローチは最良である。
論文 参考訳(メタデータ) (2020-01-16T17:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。