論文の概要: NAC-QFL: Noise Aware Clustered Quantum Federated Learning
- arxiv url: http://arxiv.org/abs/2406.14236v1
- Date: Thu, 20 Jun 2024 12:00:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:01:46.557273
- Title: NAC-QFL: Noise Aware Clustered Quantum Federated Learning
- Title(参考訳): NAC-QFL: クラスタ化量子フェデレーションラーニング
- Authors: Himanshu Sahu, Hari Prabhat Gupta,
- Abstract要約: 本稿では,雑音を考慮したクラスタリング型量子フェデレーション学習システムを提案する。
ノイズ緩和、量子デバイス容量の制限、高い量子通信コストに対処する。
分散QML性能を高め、通信コストを削減する。
- 参考スコア(独自算出の注目度): 9.752814421987246
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in quantum computing, alongside successful deployments of quantum communication, hold promises for revolutionizing mobile networks. While Quantum Machine Learning (QML) presents opportunities, it contends with challenges like noise in quantum devices and scalability. Furthermore, the high cost of quantum communication constrains the practical application of QML in real-world scenarios. This paper introduces a noise-aware clustered quantum federated learning system that addresses noise mitigation, limited quantum device capacity, and high quantum communication costs in distributed QML. It employs noise modelling and clustering to select devices with minimal noise and distribute QML tasks efficiently. Using circuit partitioning to deploy smaller models on low-noise devices and aggregating similar devices, the system enhances distributed QML performance and reduces communication costs. Leveraging circuit cutting, QML techniques are more effective for smaller circuit sizes and fidelity. We conduct experimental evaluations to assess the performance of the proposed system. Additionally, we introduce a noisy dataset for QML to demonstrate the impact of noise on proposed accuracy.
- Abstract(参考訳): 量子コンピューティングの最近の進歩は、量子通信の展開の成功と共に、モバイルネットワークの革新を約束している。
量子機械学習(QML)は機会を提供するが、量子デバイスにおけるノイズやスケーラビリティといった課題と競合する。
さらに、量子通信の高コストは、実世界のシナリオにおけるQMLの実践的応用を制約する。
本稿では、ノイズ緩和、量子デバイス容量の制限、分散QMLにおける高い量子通信コストに対処するノイズ対応クラスタリング量子フェデレーション学習システムを提案する。
ノイズモデリングとクラスタリングを使用して、最小限のノイズを持つデバイスを選択し、QMLタスクを効率的に配布する。
回路分割により、低ノイズデバイスに小さなモデルをデプロイし、類似デバイスを集約し、分散QML性能を高め、通信コストを削減する。
回路切断の活用により、QML技術はより小さな回路サイズと忠実度に有効である。
提案システムの性能評価のための実験的な評価を行う。
さらに,提案した精度に対するノイズの影響を示すため,QML用のノイズデータセットを導入する。
関連論文リスト
- Physics-inspired Machine Learning for Quantum Error Mitigation [15.243176527806126]
量子エラー除去のための機械学習のための物理に着想を得たニューラルネットワークであるNNAS(Neural Noise Accumulation Surrogate)を紹介する。
NNASは多層回路に量子ノイズ蓄積の構造的特徴を取り入れ、物理的解釈性を持つモデルを提供する。
QEM法が通常苦労する深い回路では、NNASはエラーを半分以上削減する。
論文 参考訳(メタデータ) (2025-01-08T15:07:48Z) - Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits [10.073911279652918]
量子ノイズと拡散モデルの関係について検討する。
本稿では,PQCにおける量子ノイズを軽減するために,拡散に着想を得た新しい学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-02T19:35:38Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
本稿では,量子生成学習アプリケーションのスケーラビリティと耐雑音性について検討する。
厳密なベンチマーク手法を用いて、進捗を追跡し、QMLアルゴリズムのスケーリングにおける課題を特定する。
その結果,QGANはQCBMほど次元の呪いの影響を受けず,QCBMはノイズに耐性があることがわかった。
論文 参考訳(メタデータ) (2024-03-27T15:05:55Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
我々はQuTiPの量子情報処理パッケージであるqutip-qipに新しいツールを導入する。
これらのツールはパルスレベルで量子回路をシミュレートし、QuTiPの量子力学解法と制御最適化機能を活用する。
シミュレーションプロセッサ上で量子回路がどのようにコンパイルされ、制御パルスがターゲットハミルトニアンに作用するかを示す。
論文 参考訳(メタデータ) (2021-05-20T17:06:52Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Machine learning of noise-resilient quantum circuits [0.8258451067861933]
雑音の緩和と低減は、短期量子コンピュータから有用な答えを得るのに不可欠である。
本稿では,量子回路における量子ハードウェアノイズの影響を低減するための機械学習に基づく汎用フレームワークを提案する。
ノイズ対応回路学習(NACL)と呼ばれる手法は、ユニタリ変換を計算したり、量子状態のセットを作成したり、多ビット状態の観測可能な状態を推定したりするために設計された回路に適用される。
論文 参考訳(メタデータ) (2020-07-02T15:43:32Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
ベイズ推論の実行には、ELF(Engineered chance function)が用いられる。
物理ハードウェアがノイズの多い量子コンピュータの仕組みから遷移するにつれて,ELF形式がサンプリングにおける情報ゲイン率をいかに向上させるかを示す。
この技術は、化学、材料、ファイナンスなどを含む多くの量子アルゴリズムの中心的なコンポーネントを高速化する。
論文 参考訳(メタデータ) (2020-06-16T17:46:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。