論文の概要: VeriFlow: Modeling Distributions for Neural Network Verification
- arxiv url: http://arxiv.org/abs/2406.14265v1
- Date: Thu, 20 Jun 2024 12:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:52:01.127596
- Title: VeriFlow: Modeling Distributions for Neural Network Verification
- Title(参考訳): VeriFlow:ニューラルネットワーク検証のための分散のモデル化
- Authors: Faried Abu Zaid, Daniel Neider, Mustafa Yalçıner,
- Abstract要約: フォーマル検証は、ニューラルネットワークの安全性と信頼性を保証するための有望な方法として登場した。
本稿では,流れに基づく密度モデルとしてVeriFlowアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 4.3012765978447565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Formal verification has emerged as a promising method to ensure the safety and reliability of neural networks. Naively verifying a safety property amounts to ensuring the safety of a neural network for the whole input space irrespective of any training or test set. However, this also implies that the safety of the neural network is checked even for inputs that do not occur in the real-world and have no meaning at all, often resulting in spurious errors. To tackle this shortcoming, we propose the VeriFlow architecture as a flow based density model tailored to allow any verification approach to restrict its search to the some data distribution of interest. We argue that our architecture is particularly well suited for this purpose because of two major properties. First, we show that the transformation and log-density function that are defined by our model are piece-wise affine. Therefore, the model allows the usage of verifiers based on SMT with linear arithmetic. Second, upper density level sets (UDL) of the data distribution take the shape of an $L^p$-ball in the latent space. As a consequence, representations of UDLs specified by a given probability are effectively computable in latent space. This allows for SMT and abstract interpretation approaches with fine-grained, probabilistically interpretable, control regarding on how (a)typical the inputs subject to verification are.
- Abstract(参考訳): フォーマル検証は、ニューラルネットワークの安全性と信頼性を保証するための有望な方法として登場した。
安全性を否定的に検証することは、トレーニングやテストセットに関係なく、入力空間全体のニューラルネットワークの安全性を保証する。
しかし、これはまた、ニューラルネットワークの安全性が現実世界で発生せず、意味が全くない入力に対してもチェックされ、しばしば急激なエラーを引き起こすことを意味する。
この欠点に対処するために,検証手法が関心のあるデータ分布に限定できるように,フローベース密度モデルとしてVeriFlowアーキテクチャを提案する。
アーキテクチャは2つの主要な特性のため、この目的に特に適している、と私たちは主張する。
まず、我々のモデルで定義される変換と対数密度関数が断片的アフィンであることを示す。
したがって、このモデルは線形算術を用いたSMTに基づく検証器の使用を可能にする。
第2に、データ分布の上位密度レベルセット(UDL)は、潜在空間における$L^p$-ボールの形を取る。
結果として、与えられた確率で指定されたUDLの表現は、潜在空間において効果的に計算可能である。
これにより、(a)検証対象の入力がどのように典型的であるかに関して、細粒度で確率論的に解釈可能なSMTおよび抽象解釈アプローチが可能になる。
関連論文リスト
- The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Toward Reliable Neural Specifications [3.2722498341029653]
既存のニューラルネットワークの仕様は、仕様としてデータのパラダイムにある。
本稿では,ニューラル表現を仕様とする新しい仕様群を提案する。
NAPを用いて入力空間全体の予測を検証でき、データの84%をリコールできることを示す。
論文 参考訳(メタデータ) (2022-10-28T13:21:28Z) - $p$-DkNN: Out-of-Distribution Detection Through Statistical Testing of
Deep Representations [32.99800144249333]
我々は、訓練された深層ニューラルネットワークを使用し、その中間の隠蔽表現の類似構造を分析する新しい推論手順である$p$-DkNNを紹介した。
我々は、$p$-DkNNでアダプティブアタッカーが、最悪のOOD入力の形式である敵の例を作成して、入力に意味のある変更を導入する。
論文 参考訳(メタデータ) (2022-07-25T21:42:08Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Verifying Low-dimensional Input Neural Networks via Input Quantization [12.42030531015912]
本稿では,ACAS Xu ネットワーク検証の当初の問題を再考する。
本稿では,入力量子化層をネットワークにプリペイドすることを提案する。
本手法は,浮動小数点誤差に耐性のない正確な検証結果を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:42:05Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - DoLFIn: Distributions over Latent Features for Interpretability [8.807587076209568]
ニューラルネットワークモデルにおける解釈可能性を実現するための新しい戦略を提案する。
我々のアプローチは、確率を中心量として使う成功に基づいている。
DoLFInは解釈可能なソリューションを提供するだけでなく、古典的なCNNやBiLSTMテキスト分類よりも若干優れています。
論文 参考訳(メタデータ) (2020-11-10T18:32:53Z) - Unifying supervised learning and VAEs -- coverage, systematics and
goodness-of-fit in normalizing-flow based neural network models for
astro-particle reconstructions [0.0]
統計的不確実性、包括性、体系的不確実性、あるいは適度な尺度はしばしば計算されない。
データとラベルの共分散のKL分割の目的は、教師付き学習と変分オートエンコーダの統合を可能にすることを示す。
本稿では,特定の「基本順序」輪郭の数値積分を伴わずにカバレッジ確率を計算する方法について論じる。
論文 参考訳(メタデータ) (2020-08-13T11:28:57Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。