論文の概要: Augmenting Query and Passage for Retrieval-Augmented Generation using LLMs for Open-Domain Question Answering
- arxiv url: http://arxiv.org/abs/2406.14277v1
- Date: Thu, 20 Jun 2024 12:59:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:42:16.092371
- Title: Augmenting Query and Passage for Retrieval-Augmented Generation using LLMs for Open-Domain Question Answering
- Title(参考訳): LLMを用いた検索用検索用クエリとパスの拡充による質問応答
- Authors: Minsang Kim, Cheoneum Park, Seungjun Baek,
- Abstract要約: オープンドメインQAのためのLLMによる質問と通過の増大という,シンプルで効率的な手法を提案する。
提案手法はまず,元の質問を複数段階のサブクエストに分解する。
元の質問を詳細なサブクエストとプランニングで強化することで、検索すべきものについて、クエリをより明確にすることができます。
また,抽出された通路に注意を散らす情報や意見の分割を含む場合の補償として,LLMによる自己生成通路を付加し,回答抽出を指導する。
- 参考スコア(独自算出の注目度): 5.09189220106765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation (RAG) has received much attention for Open-domain question-answering (ODQA) tasks as a means to compensate for the parametric knowledge of large language models (LLMs). While previous approaches focused on processing retrieved passages to remove irrelevant context, they still rely heavily on the quality of retrieved passages which can degrade if the question is ambiguous or complex. In this paper, we propose a simple yet efficient method called question and passage augmentation via LLMs for open-domain QA. Our method first decomposes the original questions into multiple-step sub-questions. By augmenting the original question with detailed sub-questions and planning, we are able to make the query more specific on what needs to be retrieved, improving the retrieval performance. In addition, to compensate for the case where the retrieved passages contain distracting information or divided opinions, we augment the retrieved passages with self-generated passages by LLMs to guide the answer extraction. Experimental results show that the proposed scheme outperforms the previous state-of-the-art and achieves significant performance gain over existing RAG methods.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) は、大規模言語モデル(LLM)のパラメトリック知識を補う手段として、オープンドメイン質問応答(ODQA)タスクに多くの注目を集めている。
従来のアプローチでは、無関係なコンテキストを取り除くために検索されたパスの処理に重点を置いていたが、質問があいまいな場合や複雑である場合、検索されたパスの品質に大きく依存していた。
本稿では,オープンドメインQAのためのLLMによる質問と通過の増大という,シンプルで効率的な手法を提案する。
提案手法はまず,元の質問を複数段階のサブクエストに分解する。
質問を詳細なサブクエストとプランニングで強化することにより、検索対象についてより具体的なクエリを作成できるようになり、検索性能が向上する。
また,抽出された通路に注意を散らす情報や意見の分割を含む場合の補償として,LLMによる自己生成通路を付加し,回答抽出を指導する。
実験結果から,提案手法は従来のRAG法よりも高い性能向上を実現していることがわかった。
関連論文リスト
- W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
大規模言語モデル(LLM)は、内部(パラメトリック)知識にのみ依存して、事実的な回答を生成するのに苦労することが多い。
この制限に対処するため、Retrieval-Augmented Generation (RAG)システムでは、外部ソースから関連情報を検索することでLLMを強化している。
我々はLLMのランキング機能を活用してW-RAGを提案する。
論文 参考訳(メタデータ) (2024-08-15T22:34:44Z) - Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers [66.55612528039894]
AdaQRは、シードデータセットからの限定的な書き直しアノテーションと完全にパスラベルのないクエリ書き換えモデルをトレーニングするフレームワークである。
会話クエリに条件付き回答の確率を用いて,これらの候補に対する検索者の嗜好を評価する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-16T16:09:05Z) - Passage-specific Prompt Tuning for Passage Reranking in Question Answering with Large Language Models [11.716595438057997]
オープンドメイン質問応答(PSPT)における再ランク付けのためのパス固有プロンプトチューニングを提案する。
PSPTは、学習可能なパス固有のソフトプロンプトを微調整するパラメータ効率の手法である。
我々は,Llama-2-chat-7Bモデルを用いた3つの公開領域質問応答データセットの広範な実験を行った。
論文 参考訳(メタデータ) (2024-05-31T07:43:42Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
論文 参考訳(メタデータ) (2024-04-17T01:15:54Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
対話型オープンドメイン質問回答(MICQA)のための多面的改善フレームワークを提案する。
第一に、提案したKL分割に基づく正規化は、検索と解答のためのより良い質問理解をもたらすことができる。
第二に、追加されたポストランカモジュールは、より関連性の高いパスをトップにプッシュし、2アスペクトの制約で読者に選択できる。
第3に、十分に設計されたカリキュラム学習戦略は、訓練と推論の黄金の通路設定のギャップを効果的に狭め、黄金の通路支援なしで真の答えを見つけることを奨励する。
論文 参考訳(メタデータ) (2022-04-01T07:54:27Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
質問に対する複数の異なる回答をカバーするために、パスの取得を必要とする探索不足の問題であるマルチアンサー検索について検討する。
モデルが別の有効な答えを逃す費用で同じ答えを含む通路を繰り返すべきではないので、このタスクは、検索された通路の共同モデリングを必要とします。
本稿では,再順位に着目したジョイントパス検索モデルであるJPRを紹介する。
回収された通路の合同確率をモデル化するために、JPRは、新しい訓練および復号アルゴリズムを備えた通路のシーケンスを選択する自動回帰リタイナを利用する。
論文 参考訳(メタデータ) (2021-04-17T04:48:36Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
オープンドメインの問に答える統合QAフレームワークを提案する。
提案手法は,シングルホップおよびマルチホップのオープンドメインQAデータセットにおいて,最先端技術に匹敵する性能を継続的に達成する。
論文 参考訳(メタデータ) (2020-09-16T04:31:38Z) - Knowledge-Aided Open-Domain Question Answering [58.712857964048446]
本稿では,知識支援型オープンドメインQA(KAQA)手法を提案する。
文書検索の際、質問と他の文書との関係を考慮し、候補文書を採点する。
回答の再ランク付けの間、候補の回答は、自身のコンテキストだけでなく、他の文書からのヒントを使って再ランクされる。
論文 参考訳(メタデータ) (2020-06-09T13:28:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。