論文の概要: A Survey of Methods for Mitigating Barren Plateaus for Parameterized Quantum Circuits
- arxiv url: http://arxiv.org/abs/2406.14285v1
- Date: Thu, 20 Jun 2024 13:10:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:42:16.073694
- Title: A Survey of Methods for Mitigating Barren Plateaus for Parameterized Quantum Circuits
- Title(参考訳): パラメタライズド量子回路におけるバレン高原の緩和法の検討
- Authors: Michelle Gelman,
- Abstract要約: バレンプラトーは、損失関数の平坦なプラトーに繋がるハイブリッド量子古典アルゴリズムにとって、恐ろしい挑戦である。
本稿では, 古典的な勾配の解釈と, コスト関数, 絡み合い, バレン高原への戦略を掘り下げる概念的視点を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Barren Plateaus are a formidable challenge for hybrid quantum-classical algorithms that lead to flat plateaus in the loss function landscape making it difficult to take advantage of the expressive power of parameterized quantum circuits with gradient-based methods. Like in classical neural network models, parameterized quantum circuits suffer the same vanishing gradient issue due to large parameter spaces with non-convex landscapes. In this review, we present an overview of the different genesis for barren plateaus, mathematical formalisms of common themes around barren plateaus, and dives into gradients. The central objective is to provide a conceptual perspective between classical and quantum interpretations of vanishing gradients as well as dive into techniques involving cost functions, entanglement, and initialization strategies to mitigate barren plateaus. Addressing barren plateaus paves the way towards feasibility of many classically intractable applications for quantum simulation, optimization, chemistry, and quantum machine learning.
- Abstract(参考訳): バレンプラトー(Barren Plateaus)は、損失関数のランドスケープにおいて平坦なプラトーを導くハイブリッド量子古典アルゴリズムにおいて、勾配に基づくパラメータ化量子回路の表現力を利用するのが困難である。
古典的ニューラルネットワークモデルと同様に、パラメータ化された量子回路は、非凸ランドスケープを持つ大きなパラメータ空間のために、同じ消滅した勾配問題に悩まされる。
本総説では,バレン高原の異なる世代,バレン高原周辺の共通テーマの数学的定式化,勾配への潜入について概説する。
中心的な目的は、消失する勾配の古典的および量子的解釈と、コスト関数、絡み合い、バレン高原を緩和するための初期化戦略を含む技術への潜入という概念的視点を提供することである。
ヴァレン高原への対処は、量子シミュレーション、最適化、化学、および量子機械学習のための、古典的に難解な多くのアプリケーションの実現可能性への道を開く。
関連論文リスト
- Avoiding barren plateaus via Gaussian Mixture Model [6.0599055267355695]
変分量子アルゴリズムは、量子コンピューティングにおいて最も代表的なアルゴリズムの1つである。
大量の量子ビット、ディープ・サーキット・レイヤ、グローバル・コスト・ファンクションを扱う場合、それらはしばしば訓練不能となる。
論文 参考訳(メタデータ) (2024-02-21T03:25:26Z) - Emergence of noise-induced barren plateaus in arbitrary layered noise
models [44.99833362998488]
変分量子アルゴリズムでは、パラメータ化された量子回路のパラメータは、問題の解を符号化するコスト関数を最小限に抑えるために最適化される。
層状雑音モデルを用いたパラメータ化量子回路において,ノイズ誘起バレンプラトー現象がどのように出現するか,その意味について論じる。
論文 参考訳(メタデータ) (2023-10-12T15:18:27Z) - From barren plateaus through fertile valleys: Conic extensions of
parameterised quantum circuits [0.0]
我々は、不毛の高原から肥大な谷に飛び降りるのを好むアプローチを導入する。
これらの演算は、パラメータ化されたユニタリ量子回路の円錐拡張によって構成される。
さらに,低次元一般化固有値問題に対する最適跳躍方向を求める問題を小さくする。
論文 参考訳(メタデータ) (2023-10-06T13:56:42Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Avoiding barren plateaus via transferability of smooth solutions in
Hamiltonian Variational Ansatz [0.0]
変分量子アルゴリズム(VQA)は、現在の量子デバイス上で計算スピードアップを達成するための主要な候補である。
2つの大きなハードルは、低品質な局所最小値の増殖と、コスト関数のランドスケープにおける勾配の指数的な消失である。
ここでは、反復探索方式を用いることで、パラダイム的量子多体モデルの基底状態を効果的に作成できることを示す。
論文 参考訳(メタデータ) (2022-06-04T12:52:29Z) - BEINIT: Avoiding Barren Plateaus in Variational Quantum Algorithms [0.7462336024223667]
バレンプラトーは変分量子アルゴリズムの最適化において悪名高い問題である。
ベータ分布から引き出すことで、ユニタリゲートのパラメータを初期化する代替戦略を提案する。
提案手法は, 複雑な量子ニューラルネットワークがバレン高原で立ち往生する可能性を大幅に低減することを示す。
論文 参考訳(メタデータ) (2022-04-28T19:46:10Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
近年、変分量子回路は量子シミュレーションや量子機械学習に広く用いられている。
しかし、ランダムな構造を持つ量子回路は、回路深さと量子ビット数に関して指数関数的に消える勾配のため、トレーニング容易性が低い。
この結果、ディープ量子回路は実用的なタスクでは実現できないという一般的な信念が導かれる。
論文 参考訳(メタデータ) (2022-03-17T15:06:40Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Entanglement Devised Barren Plateau Mitigation [1.382143546774115]
我々は不規則な高原の源としてランダムな絡み合いを含意し、多体絡み合いのダイナミクスの観点から特徴付ける。
本稿では,多くのバレン高原改善技術を提案し,実証する。
エンタングルメントの制限は、自動およびエンジニアリングの両方で、高精度なトレーニングの目印であることが分かっています。
論文 参考訳(メタデータ) (2020-12-22T17:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。