Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers
- URL: http://arxiv.org/abs/2406.14325v3
- Date: Wed, 26 Feb 2025 11:34:49 GMT
- Title: Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers
- Authors: Harald Semmelrock, Tony Ross-Hellauer, Simone Kopeinik, Dieter Theiler, Armin Haberl, Stefan Thalmann, Dominik Kowald,
- Abstract summary: Lack of transparency, data or code, poor adherence to standards, and sensitivity of ML training mean that many papers are not even reproducible in principle.<n>Experiments have found worryingly low degrees of similarity with original results.<n>Poor integrity threatens trust in and integrity of research results.
- Score: 1.4841630983274845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many research fields are currently reckoning with issues of poor levels of reproducibility. Some label it a "crisis", and research employing or building Machine Learning (ML) models is no exception. Issues including lack of transparency, data or code, poor adherence to standards, and the sensitivity of ML training conditions mean that many papers are not even reproducible in principle. Where they are, though, reproducibility experiments have found worryingly low degrees of similarity with original results. Despite previous appeals from ML researchers on this topic and various initiatives from conference reproducibility tracks to the ACM's new Emerging Interest Group on Reproducibility and Replicability, we contend that the general community continues to take this issue too lightly. Poor reproducibility threatens trust in and integrity of research results. Therefore, in this article, we lay out a new perspective on the key barriers and drivers (both procedural and technical) to increased reproducibility at various levels (methods, code, data, and experiments). We then map the drivers to the barriers to give concrete advice for strategies for researchers to mitigate reproducibility issues in their own work, to lay out key areas where further research is needed in specific areas, and to further ignite discussion on the threat presented by these urgent issues.
Related papers
- Adversarial Alignment for LLMs Requires Simpler, Reproducible, and More Measurable Objectives [52.863024096759816]
Misaligned research objectives have hindered progress in adversarial robustness research over the past decade.
We argue that realigned objectives are necessary for meaningful progress in adversarial alignment.
arXiv Detail & Related papers (2025-02-17T15:28:40Z) - LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues [62.12404317786005]
EvoCoder is a continuous learning framework for issue code reproduction.
Our results show a 20% improvement in issue reproduction rates over existing SOTA methods.
arXiv Detail & Related papers (2024-11-21T08:49:23Z) - Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - A Looming Replication Crisis in Evaluating Behavior in Language Models? Evidence and Solutions [15.350973327319418]
Large language models (LLMs) are increasingly integrated into a wide range of everyday applications.
This raises concerns about the replicability and generalizability of insights gained from research on LLM behavior.
We tested GPT-3.5, GPT-4o, Gemini 1.5 Pro, Claude 3 Opus, Llama 3-8B, and Llama 3-70B, on the chain-of-thought, EmotionPrompting, ExpertPrompting, Sandbagging, as well as Re-Reading prompt engineering techniques.
arXiv Detail & Related papers (2024-09-30T14:00:34Z) - Maintainability Challenges in ML: A Systematic Literature Review [5.669063174637433]
This study aims to identify and synthesise the maintainability challenges in different stages of the Machine Learning workflow.
We screened more than 13000 papers, then selected and qualitatively analysed 56 of them.
arXiv Detail & Related papers (2024-08-17T13:24:15Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Reproducibility, Replicability, and Repeatability: A survey of reproducible research with a focus on high performance computing [0.0]
Reproducibility is a fundamental principle in scientific research.
Highperformance computing presents unique challenges.
This paper provides a comprehensive review of these concerns and potential solutions.
arXiv Detail & Related papers (2024-02-12T09:59:11Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Endogenous Macrodynamics in Algorithmic Recourse [52.87956177581998]
Existing work on Counterfactual Explanations (CE) and Algorithmic Recourse (AR) has largely focused on single individuals in a static environment.
We show that many of the existing methodologies can be collectively described by a generalized framework.
We then argue that the existing framework does not account for a hidden external cost of recourse, that only reveals itself when studying the endogenous dynamics of recourse at the group level.
arXiv Detail & Related papers (2023-08-16T07:36:58Z) - Reproducibility in Machine Learning-Driven Research [1.7936835766396748]
Research is facing a viability crisis, in which the results and findings of many studies are difficult or even impossible to reproduce.
This is also the case in machine learning (ML) and artificial intelligence (AI) research.
Although different solutions to address this issue are discussed in the research community such as using ML platforms, the level of in ML-driven research is not increasing substantially.
arXiv Detail & Related papers (2023-07-19T07:00:22Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
Forgetting refers to the loss or deterioration of previously acquired knowledge.
Forgetting is a prevalent phenomenon observed in various other research domains within deep learning.
arXiv Detail & Related papers (2023-07-16T16:27:58Z) - A Review of Machine Learning Methods Applied to Structural Dynamics and
Vibroacoustic [0.0]
Three main applications in Vibroacoustic (SD&V) have taken advantage of Machine Learning (ML)
In Structural Health Monitoring, ML detection and prognosis lead to safe operation and optimized maintenance schedules.
System identification and control design are leveraged by ML techniques in Active Noise Control and Active Vibration Control.
The so-called ML-based surrogate models provide fast alternatives to costly simulations, enabling robust and optimized product design.
arXiv Detail & Related papers (2022-04-13T13:16:21Z) - The worst of both worlds: A comparative analysis of errors in learning
from data in psychology and machine learning [17.336655978572583]
Recent concerns that machine learning (ML) may be facing a misdiagnosis and replication crisis suggest that some published claims in ML research cannot be taken at face value.
A deeper understanding of what concerns in research in supervised ML have in common with the replication crisis in experimental science can put the new concerns in perspective.
arXiv Detail & Related papers (2022-03-12T18:26:24Z) - The challenge of reproducible ML: an empirical study on the impact of
bugs [6.862925771672299]
In this paper, we establish the fundamental factors that cause non-determinism in Machine Learning systems.
A framework, ReproduceML, is then introduced for deterministic evaluation of ML experiments in a real, controlled environment.
This study attempts to quantify the impact that the occurrence of bugs in a popular ML framework, PyTorch, has on the performance of trained models.
arXiv Detail & Related papers (2021-09-09T01:36:39Z) - A Guide to Reproducible Research in Signal Processing and Machine
Learning [9.69596041242667]
In 2016 a survey conducted by the journal Nature found that 50% of researchers were unable to reproduce their own experiments.
We aim to present signal processing researchers with a set of practical tools and strategies that can help mitigate many of the obstacles to producing reproducible computational experiments.
arXiv Detail & Related papers (2021-08-27T16:42:32Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Understanding the Usability Challenges of Machine Learning In
High-Stakes Decision Making [67.72855777115772]
Machine learning (ML) is being applied to a diverse and ever-growing set of domains.
In many cases, domain experts -- who often have no expertise in ML or data science -- are asked to use ML predictions to make high-stakes decisions.
We investigate the ML usability challenges present in the domain of child welfare screening through a series of collaborations with child welfare screeners.
arXiv Detail & Related papers (2021-03-02T22:50:45Z) - Machine Learning Towards Intelligent Systems: Applications, Challenges,
and Opportunities [8.68311678910946]
Machine learning (ML) provides a mechanism for humans to process large amounts of data.
This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media.
arXiv Detail & Related papers (2021-01-11T01:32:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.