論文の概要: WEATHER-5K: A Large-scale Global Station Weather Dataset Towards Comprehensive Time-series Forecasting Benchmark
- arxiv url: http://arxiv.org/abs/2406.14399v1
- Date: Thu, 20 Jun 2024 15:18:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:03:05.462764
- Title: WEATHER-5K: A Large-scale Global Station Weather Dataset Towards Comprehensive Time-series Forecasting Benchmark
- Title(参考訳): WEATHER-5K: 総合時系列予測ベンチマークに向けた大規模グローバルステーション気象データセット
- Authors: Tao Han, Song Guo, Zhenghao Chen, Wanghan Xu, Lei Bai,
- Abstract要約: WEATHER-5Kデータセットは、世界中の5,672の気象観測所から収集された包括的なデータである。
複数の重要な気象要素を含み、予測のための信頼性と解釈可能な資源を提供する。
- 参考スコア(独自算出の注目度): 22.68937280154092
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Global Station Weather Forecasting (GSWF) is crucial for various sectors, including aviation, agriculture, energy, and disaster preparedness. Recent advancements in deep learning have significantly improved the accuracy of weather predictions by optimizing models based on public meteorological data. However, existing public datasets for GSWF optimization and benchmarking still suffer from significant limitations, such as small sizes, limited temporal coverage, and a lack of comprehensive variables. These shortcomings prevent them from effectively reflecting the benchmarks of current forecasting methods and fail to support the real needs of operational weather forecasting. To address these challenges, we present the WEATHER-5K dataset. This dataset comprises a comprehensive collection of data from 5,672 weather stations worldwide, spanning a 10-year period with one-hour intervals. It includes multiple crucial weather elements, providing a more reliable and interpretable resource for forecasting. Furthermore, our WEATHER-5K dataset can serve as a benchmark for comprehensively evaluating existing well-known forecasting models, extending beyond GSWF methods to support future time-series research challenges and opportunities. The dataset and benchmark implementation are publicly available at: https://github.com/taohan10200/WEATHER-5K.
- Abstract(参考訳): グローバルステーション気象予報(GSWF)は、航空、農業、エネルギー、災害対応など様々な分野において重要である。
近年の深層学習の進歩により,公共気象データに基づくモデル最適化により,天気予報の精度が大幅に向上した。
しかし、GSWF最適化とベンチマークのための既存の公開データセットは、小さなサイズ、時間的カバレッジの制限、包括的な変数の欠如など、大きな制限を被っている。
これらの欠点は、現在の予測手法のベンチマークを効果的に反映することを防ぎ、運用上の天気予報の真のニーズをサポートしない。
これらの課題に対処するため、WAATHER-5Kデータセットを提示する。
このデータセットは、世界中の5,672の気象観測所からのデータを集めており、1時間間隔で10年間に及ぶ。
複数の重要な気象要素を含み、予測のための信頼性と解釈可能な資源を提供する。
さらに、我々のWAATHER-5Kデータセットは、既存のよく知られた予測モデルを総合的に評価するためのベンチマークとして機能し、GSWFメソッドを超えて将来の時系列研究課題と機会をサポートすることができる。
データセットとベンチマークの実装は、https://github.com/taohan10200/WEATHER-5Kで公開されている。
関連論文リスト
- HR-Extreme: A High-Resolution Dataset for Extreme Weather Forecasting [12.561873438789242]
本研究では,高解像度の極端気象事例を包含した包括的データセットを提案する。
HR-Extreme上での最先端ディープラーニングモデルと数値気象予測システム(NWP)の評価を行った。
論文 参考訳(メタデータ) (2024-09-27T16:20:51Z) - WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
我々は,地球近傍の地表面観測から得られた気象予報のための新しいベンチマークデータセットであるWeatherRealを紹介する。
本稿では,データセットの基盤となる情報源と処理手法を詳述するとともに,超局地的・極端な気象観測におけるその場観測の利点について述べる。
私たちの研究は、AIベースの天気予報研究を、よりアプリケーション中心で運用対応のアプローチへと進めることを目的としています。
論文 参考訳(メタデータ) (2024-09-14T08:53:46Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
本稿では,複数の気象観測所の過去のデータを利用して,シンプルな機械学習モデルを訓練する天気予報手法を提案する。
モデルの精度は、現在の最先端技術と併用するのに十分である。
論文 参考訳(メタデータ) (2020-08-25T02:41:32Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
深層畳み込みニューラルネットワーク(CNN)を用いたデータ駆動型世界天気予報フレームワークを提案する。
このフレームワークの新しい開発には、オフラインの体積保存的マッピングから立方体球格子へのマッピングが含まれる。
我々のモデルでは、入力された大気状態の少ない変数から複雑な表面温度パターンを予測することができる。
論文 参考訳(メタデータ) (2020-03-15T19:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。