論文の概要: Fusion of Movement and Naive Predictions for Point Forecasting in Univariate Random Walks
- arxiv url: http://arxiv.org/abs/2406.14469v3
- Date: Thu, 18 Jul 2024 10:19:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 20:22:33.556873
- Title: Fusion of Movement and Naive Predictions for Point Forecasting in Univariate Random Walks
- Title(参考訳): 一様ランダムウォークにおける点予測のための動きの融合とナイーブ予測
- Authors: Cheng Zhang,
- Abstract要約: 本研究では, 動作予測(バイナリ分類)を, 正確な1ステップ先進予測のためのナイーブ予測と融合させる新しい手法を提案する。
0.55のような中程度の運動予測精度で、ナイーブ予測を確実に上回る。
この方法は、正確な点予測が難しいが正確な運動予測が可能である場合に特に有利である。
- 参考スコア(独自算出の注目度): 6.935130578959931
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional methods for point forecasting in univariate random walks often fail to surpass naive benchmarks due to data unpredictability. This study introduces a novel forecasting method that fuses movement prediction (binary classification) with naive forecasts for accurate one-step-ahead point forecasting in univariate random walks. The method's efficacy is demonstrated through theoretical analysis, simulations, and real-world data experiments. It reliably outperforms naive forecasts with moderate movement prediction accuracies, such as 0.55, and is superior to baseline models such as the ARIMA, linear regression, MLP, and LSTM networks in forecasting the S&P 500 index and Bitcoin prices. This method is particularly advantageous when accurate point predictions are challenging but accurate movement predictions are attainable, translating movement predictions into point forecasts in random walk contexts.
- Abstract(参考訳): 単変量ランダムウォークにおける点予測の従来の方法は、データの予測不能のため、単純なベンチマークを超えないことが多い。
本研究では,単変量無作為歩行における1段階の正確な予測を行うために,動作予測(バイナリ分類)とナイーブ予測を融合する新しい予測手法を提案する。
この手法の有効性は理論解析、シミュレーション、実世界のデータ実験を通じて実証される。
S&P500指数やBitcoin価格の予測において、ARIMA、線形回帰、MLP、LSTMネットワークなどのベースラインモデルよりも優れている。
この方法は、正確な点予測が困難な場合に特に有利であるが、正確な運動予測が達成可能であり、ランダムウォークコンテキストにおける点予測に移動予測を変換する。
関連論文リスト
- Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
予測間隔で機械学習モデルをペアリングするための有望な方法として、コンフォーマル予測が登場した。
本研究では,深部回帰林から得られた分散度を算出し,各試料の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T19:09:53Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
SMURF-THPは,変圧器ホークス過程を学習し,予測の不確かさを定量化するスコアベース手法である。
具体的には、SMURF-THPは、スコアマッチング目標に基づいて、イベントの到着時刻のスコア関数を学習する。
我々は,イベントタイプ予測と到着時刻の不確実性定量化の両方において,広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-25T03:33:45Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
本稿では,時間-時間予測タスクのためのDeep Kernel Accelerated Failure Timeモデルを提案する。
我々のモデルは、2つの実世界のデータセットの実験において、繰り返しニューラルネットワークに基づくベースラインよりも良い点推定性能を示す。
論文 参考訳(メタデータ) (2021-07-26T14:55:02Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Beyond Point Estimate: Inferring Ensemble Prediction Variation from
Neuron Activation Strength in Recommender Systems [21.392694985689083]
Ensemble Methodは、予測不確実性推定のための最先端のベンチマークである。
予測のバリエーションは、様々なランダム性源から生じることを観察する。
本稿では,ニューロンの活性化強度の予測変動を推定し,活性化強度の特徴から強い予測力を示す。
論文 参考訳(メタデータ) (2020-08-17T00:08:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。