DragPoser: Motion Reconstruction from Variable Sparse Tracking Signals via Latent Space Optimization
- URL: http://arxiv.org/abs/2406.14567v1
- Date: Mon, 29 Apr 2024 15:00:50 GMT
- Title: DragPoser: Motion Reconstruction from Variable Sparse Tracking Signals via Latent Space Optimization
- Authors: Jose Luis Ponton, Eduard Pujol, Andreas Aristidou, Carlos Andujar, Nuria Pelechano,
- Abstract summary: DragPoser is a novel deep-learning-based motion reconstruction system.
It accurately represents hard and dynamic on-the-fly constraints.
It produces natural poses and temporally coherent motion.
- Score: 1.5603779307797123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality motion reconstruction that follows the user's movements can be achieved by high-end mocap systems with many sensors. However, obtaining such animation quality with fewer input devices is gaining popularity as it brings mocap closer to the general public. The main challenges include the loss of end-effector accuracy in learning-based approaches, or the lack of naturalness and smoothness in IK-based solutions. In addition, such systems are often finely tuned to a specific number of trackers and are highly sensitive to missing data e.g., in scenarios where a sensor is occluded or malfunctions. In response to these challenges, we introduce DragPoser, a novel deep-learning-based motion reconstruction system that accurately represents hard and dynamic on-the-fly constraints, attaining real-time high end-effectors position accuracy. This is achieved through a pose optimization process within a structured latent space. Our system requires only one-time training on a large human motion dataset, and then constraints can be dynamically defined as losses, while the pose is iteratively refined by computing the gradients of these losses within the latent space. To further enhance our approach, we incorporate a Temporal Predictor network, which employs a Transformer architecture to directly encode temporality within the latent space. This network ensures the pose optimization is confined to the manifold of valid poses and also leverages past pose data to predict temporally coherent poses. Results demonstrate that DragPoser surpasses both IK-based and the latest data-driven methods in achieving precise end-effector positioning, while it produces natural poses and temporally coherent motion. In addition, our system showcases robustness against on-the-fly constraint modifications, and exhibits exceptional adaptability to various input configurations and changes.
Related papers
- ReMP: Reusable Motion Prior for Multi-domain 3D Human Pose Estimation and Motion Inbetweening [10.813269931915364]
We learn rich motion from prior sequence of complete parametric models of human body shape.
Our prior can easily estimate poses in missing frames or noisy measurements.
ReMP consistently outperforms the baseline method on diverse and practical 3D motion data.
arXiv Detail & Related papers (2024-11-13T02:42:07Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Simultaneous Map and Object Reconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.
We take inspiration from recent novel view synthesis methods and pose the reconstruction problem as a global optimization.
By careful modeling of continuous-time motion, our reconstructions can compensate for the rolling shutter effects of rotating LiDAR sensors.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
We aim to learn an implicit motion field parameterized by a neural network to predict the movement of novel points within same domain.
We exploit intrinsic regularization provided by SIREN, and modify the input layer to produce atemporally smooth motion field.
Our experiments assess the model's performance in predicting unseen point trajectories and its application in temporal mesh alignment with deformation.
arXiv Detail & Related papers (2024-06-05T21:02:10Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - Kinematic-aware Hierarchical Attention Network for Human Pose Estimation
in Videos [17.831839654593452]
Previous-based human pose estimation methods have shown promising results by leveraging features of consecutive frames.
Most approaches compromise accuracy to jitter and do not comprehend the temporal aspects of human motion.
We design an architecture that exploits kinematic keypoint features.
arXiv Detail & Related papers (2022-11-29T01:46:11Z) - A Flexible-Frame-Rate Vision-Aided Inertial Object Tracking System for
Mobile Devices [3.4836209951879957]
We propose a flexible-frame-rate object pose estimation and tracking system for mobile devices.
Inertial measurement unit (IMU) pose propagation is performed on the client side for high speed tracking, and RGB image-based 3D pose estimation is performed on the server side.
Our system supports flexible frame rates up to 120 FPS and guarantees high precision and real-time tracking on low-end devices.
arXiv Detail & Related papers (2022-10-22T15:26:50Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Object-based Illumination Estimation with Rendering-aware Neural
Networks [56.01734918693844]
We present a scheme for fast environment light estimation from the RGBD appearance of individual objects and their local image areas.
With the estimated lighting, virtual objects can be rendered in AR scenarios with shading that is consistent to the real scene.
arXiv Detail & Related papers (2020-08-06T08:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.