QuIP: A P4 Quantum Internet Protocol Prototyping Framework
- URL: http://arxiv.org/abs/2406.14597v1
- Date: Thu, 20 Jun 2024 17:47:07 GMT
- Title: QuIP: A P4 Quantum Internet Protocol Prototyping Framework
- Authors: Wojciech Kozlowski, Fernando A. Kuipers, Rob Smets, Belma Turkovic,
- Abstract summary: QuIP is a framework for designing and implementing quantum network protocols in a platform-agnostic fashion.
It comes with the necessary tooling to enable their execution in existing quantum network simulators.
We demonstrate its use by showcasing V1Quantum, a completely new device architecture, implementing a link- and network-layer protocol.
- Score: 42.856299994841734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum entanglement is so fundamentally different from a network packet that several quantum network stacks have been proposed; one of which has even been experimentally demonstrated. Several simulators have also been developed to make up for limited hardware availability, and which facilitate the design and evaluation of quantum network protocols. However, the lack of shared tooling and community-agreed node architectures has resulted in protocol implementations that are tightly coupled to their simulators. Besides limiting their reusability between different simulators, it also makes building upon prior results and simulations difficult. To address this problem, we have developed QuIP: a P4-based Quantum Internet Protocol prototyping framework for quantum network protocol design. QuIP is a framework for designing and implementing quantum network protocols in a platform-agnostic fashion. It achieves this by providing the means to flexibly, but rigorously, define device architectures against which quantum network protocols can be implemented in the network programming language P4$_{16}$. QuIP also comes with the necessary tooling to enable their execution in existing quantum network simulators. We demonstrate its use by showcasing V1Quantum, a completely new device architecture, implementing a link- and network-layer protocol, and simulating it in the existing simulator NetSquid.
Related papers
- SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.
We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - Control Flow Adaption: An Efficient Simulation Method For Noisy Quantum Networks [3.097454217793115]
Quantum network research at both the software stack and hardware implementation level has become an exciting area of quantum information science.
We introduce a novel quantum network simulation method called control flow adaptation.
We have developed a prototype quantum network simulator, qns-3, as a module for ns-3.
arXiv Detail & Related papers (2024-12-12T05:37:55Z) - Reconfigurable Quantum Internet Service Provider [13.854695863568166]
We demonstrate the concept of quantum internet service provider (QISP)
We construct a reconfigurable QISP comprising both the quantum hardware and classical control software.
Our experiment demonstrates the robust capabilities of the QISP.
arXiv Detail & Related papers (2023-05-15T22:19:00Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - QuISP: a Quantum Internet Simulation Package [0.6501025489527174]
QuISP is designed to simulate large-scale quantum networks to investigate their behavior under realistic, noisy and heterogeneous configurations.
This simulator promotes the development of protocols for larger and more complex quantum networks.
arXiv Detail & Related papers (2021-12-14T01:18:50Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
We identify requirements for parallel simulation of quantum networks and develop the first parallel discrete event quantum network simulator.
Our contributions include the design and development of a quantum state manager that maintains shared quantum information distributed across multiple processes.
We release the parallel SeQUeNCe simulator as an open-source tool alongside the existing sequential version.
arXiv Detail & Related papers (2021-11-06T16:51:17Z) - A P4 Data Plane for the Quantum Internet [68.97335984455059]
A new -- quantum -- network stack will be needed to account for the fundamentally new properties of quantum entanglement.
In the non-quantum world, programmable data planes have broken the pattern of ossification of the protocol stack.
We demonstrate how we use P4$_16$ to explore abstractions and device architectures for quantum networks.
arXiv Detail & Related papers (2020-10-21T19:37:23Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.