論文の概要: An LLM Feature-based Framework for Dialogue Constructiveness Assessment
- arxiv url: http://arxiv.org/abs/2406.14760v1
- Date: Thu, 20 Jun 2024 22:10:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 15:22:05.767424
- Title: An LLM Feature-based Framework for Dialogue Constructiveness Assessment
- Title(参考訳): 対話構築性評価のためのLLM特徴量に基づくフレームワーク
- Authors: Lexin Zhou, Youmna Farag, Andreas Vlachos,
- Abstract要約: 対話構築性の研究は、(i)個人が特定の行動をとること、議論に勝つこと、視点を変えること、またはオープンマインドネスを広げること、そして(ii)そのようなユースケースに対する対話に続く構成的結果を予測することに影響を与える会話的要因を分析することに焦点を当てている。
本稿では,対話構築性の評価において,特徴ベースとニューラルアプローチの長所を両立させるとともに,その短所を緩和しつつ,特徴ベースとニューラルアプローチの長所を結合した新しいLLM特徴ベースフレームワークを提案する。
この枠組みを3つの対話構築性データセットに適用し、LLM特徴ベースモデルが標準特徴ベースモデルやニューラルモデルよりも大幅に優れており、表面的なショートカットに頼るのではなく、より堅牢な予測規則を学習する傾向があることを発見した。
- 参考スコア(独自算出の注目度): 8.87747076871578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research on dialogue constructiveness assessment focuses on (i) analysing conversational factors that influence individuals to take specific actions, win debates, change their perspectives or broaden their open-mindedness and (ii) predicting constructive outcomes following dialogues for such use cases. These objectives can be achieved by training either interpretable feature-based models (which often involve costly human annotations) or neural models such as pre-trained language models (which have empirically shown higher task accuracy but lack interpretability). We propose a novel LLM feature-based framework that combines the strengths of feature-based and neural approaches while mitigating their downsides, in assessing dialogue constructiveness. The framework first defines a set of dataset-independent and interpretable linguistic features, which can be extracted by both prompting an LLM and simple heuristics. Such features are then used to train LLM feature-based models. We apply this framework to three datasets of dialogue constructiveness and find that our LLM feature-based models significantly outperform standard feature-based models and neural models, and tend to learn more robust prediction rules instead of relying on superficial shortcuts (as seen with neural models). Further, we demonstrate that interpreting these LLM feature-based models can yield valuable insights into what makes a dialogue constructive.
- Abstract(参考訳): 対話構築性評価に関する研究
一 個人に特定の行動をとること、議論に勝つこと、視点を変えること、またはオープンマインドネスを広げることに影響を及ぼす会話的要因の分析。
(二)そのような場合の対話による建設的な成果を予測すること。
これらの目的は、解釈可能な特徴ベースモデル(しばしば人為的アノテーションを含む)または事前訓練された言語モデルのようなニューラルモデルをトレーニングすることで達成できる。
本稿では,対話構築性の評価において,特徴ベースとニューラルアプローチの長所を両立させるとともに,その短所を緩和しつつ,特徴ベースとニューラルアプローチの長所を結合した新しいLLM特徴ベースフレームワークを提案する。
このフレームワークはまず、LLMと単純なヒューリスティックスの両方によって抽出できる、データセットに依存しない、解釈可能な言語特徴のセットを定義する。
このような機能は、LLM機能ベースのモデルをトレーニングするために使用される。
この枠組みを3つの対話構築性データセットに適用し、LLM特徴ベースモデルが標準特徴ベースモデルやニューラルモデルよりも大幅に優れており、表面的なショートカットに頼るのではなく、より堅牢な予測規則を学習する傾向がある(ニューラルモデルに見られるように)。
さらに、これらのLLM特徴量に基づくモデルを解釈することで、対話が構成的になるかどうかについての貴重な洞察が得られることを実証する。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - Verbalized Probabilistic Graphical Modeling with Large Language Models [8.961720262676195]
この研究は、大規模言語モデルによる学習自由ベイズ推論を促進する新しいベイズ急進的アプローチを導入している。
本研究は,AI言語理解システムの改善の可能性を示すとともに,信頼性評価とテキスト生成品質を効果的に向上させることを示唆する。
論文 参考訳(メタデータ) (2024-06-08T16:35:31Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Can Large Language Models Understand Context? [17.196362853457412]
本稿では,生成モデルの評価に適合する既存のデータセットを適応させることにより,文脈理解ベンチマークを提案する。
実験結果から, 事前学習された高密度モデルでは, 最先端の微調整モデルと比較して, よりニュアンスな文脈特徴の理解に苦慮していることが明らかとなった。
LLM圧縮は研究と実世界のアプリケーションの両方において重要度が高くなっているため、文脈学習環境下での量子化モデルの文脈理解を評価する。
論文 参考訳(メタデータ) (2024-02-01T18:55:29Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Competence-Based Analysis of Language Models [21.43498764977656]
CALM (Competence-based Analysis of Language Models) は、特定のタスクの文脈におけるLLM能力を調べるために設計された。
我々は,勾配に基づく対向攻撃を用いた因果探究介入を行うための新しい手法を開発した。
これらの介入を用いてCALMのケーススタディを行い、様々な語彙推論タスクにおけるLCM能力の分析と比較を行う。
論文 参考訳(メタデータ) (2023-03-01T08:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。