論文の概要: On the growth of the parameters of approximating ReLU neural networks
- arxiv url: http://arxiv.org/abs/2406.14936v1
- Date: Fri, 21 Jun 2024 07:45:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 12:34:06.810998
- Title: On the growth of the parameters of approximating ReLU neural networks
- Title(参考訳): ReLUニューラルネットワークの近似パラメータの成長について
- Authors: Erion Morina, Martin Holler,
- Abstract要約: この研究は、与えられた滑らかな関数を近似する完全連結フィードフォワードReLUニューラルネットワークの解析に焦点を当てる。
アーキテクチャの増大にともなう,従来の普遍近似特性とは対照的に,近似ネットワークのパラメータの増大が懸念される。
- 参考スコア(独自算出の注目度): 0.542249320079018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work focuses on the analysis of fully connected feed forward ReLU neural networks as they approximate a given, smooth function. In contrast to conventionally studied universal approximation properties under increasing architectures, e.g., in terms of width or depth of the networks, we are concerned with the asymptotic growth of the parameters of approximating networks. Such results are of interest, e.g., for error analysis or consistency results for neural network training. The main result of our work is that, for a ReLU architecture with state of the art approximation error, the realizing parameters grow at most polynomially. The obtained rate with respect to a normalized network size is compared to existing results and is shown to be superior in most cases, in particular for high dimensional input.
- Abstract(参考訳): この研究は、与えられた滑らかな関数を近似する完全連結フィードフォワードReLUニューラルネットワークの解析に焦点を当てる。
ネットワークの幅や深さの面でのアーキテクチャの増大にともなう,従来の普遍近似特性とは対照的に,近似ネットワークのパラメータの漸近的な成長が懸念される。
このような結果は、例えば、エラー解析やニューラルネットワークトレーニングの一貫性結果に注目されている。
我々の研究の主な成果は、最先端の近似誤差を持つReLUアーキテクチャの場合、実現パラメータはほとんど多項式的に増加することである。
正規化されたネットワークサイズに対する得られた速度は、既存の結果と比較され、特に高次元入力において、ほとんどの場合において優れていることが示されている。
関連論文リスト
- Optimization dependent generalization bound for ReLU networks based on
sensitivity in the tangent bundle [0.0]
本稿では,フィードフォワードReLUネットワークの一般化誤差に基づいたPAC型を提案する。
得られた境界はネットワークの深さに明示的に依存しない。
論文 参考訳(メタデータ) (2023-10-26T13:14:13Z) - Exploring the Complexity of Deep Neural Networks through Functional Equivalence [1.3597551064547502]
本稿では,ニューラルネットワークの複雑性を低減できることを示す,ディープニューラルネットワークの被覆数に縛られた新しい手法を提案する。
ネットワーク幅の増大により有効パラメータ空間の容量が減少するので、パラメータ化ネットワーク上でのトレーニングが容易になる傾向があるため、関数同値の利点が最適化されることを実証する。
論文 参考訳(メタデータ) (2023-05-19T04:01:27Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Generalization Error Bounds for Iterative Recovery Algorithms Unfolded
as Neural Networks [6.173968909465726]
線形測定の少ないスパース再構成に適したニューラルネットワークの一般クラスを導入する。
層間の重量共有を広範囲に行うことで、全く異なるニューラルネットワークタイプに対する統一的な分析を可能にします。
論文 参考訳(メタデータ) (2021-12-08T16:17:33Z) - Approximation Properties of Deep ReLU CNNs [8.74591882131599]
本稿では,2次元空間上での深部ReLU畳み込みニューラルネットワーク(CNN)の近似特性について述べる。
この分析は、大きな空間サイズとマルチチャネルを持つ畳み込みカーネルの分解定理に基づいている。
論文 参考訳(メタデータ) (2021-09-01T05:16:11Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Expressivity of Deep Neural Networks [2.7909470193274593]
本稿では,ニューラルネットワークの様々な近似結果について概説する。
既存の結果は、一般的なフィードフォワードアーキテクチャのためのものだが、畳み込み、残留、反復するニューラルネットワークの近似結果も記述する。
論文 参考訳(メタデータ) (2020-07-09T13:08:01Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。