A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion
- URL: http://arxiv.org/abs/2406.15128v1
- Date: Fri, 21 Jun 2024 13:21:44 GMT
- Title: A Wavelet Guided Attention Module for Skin Cancer Classification with Gradient-based Feature Fusion
- Authors: Ayush Roy, Sujan Sarkar, Sohom Ghosal, Dmitrii Kaplun, Asya Lyanova, Ram Sarkar,
- Abstract summary: We propose a novel model, which uses a novel attention mechanism to pinpoint the differences in features across the spatial dimensions and symmetry of the lesion.
We have tested our model on the multi-class and highly class-imbalanced dataset, called HAM10000, and achieved promising results, with a 91.17% F1-score and 90.75% accuracy.
- Score: 22.872949341281657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skin cancer is a highly dangerous type of cancer that requires an accurate diagnosis from experienced physicians. To help physicians diagnose skin cancer more efficiently, a computer-aided diagnosis (CAD) system can be very helpful. In this paper, we propose a novel model, which uses a novel attention mechanism to pinpoint the differences in features across the spatial dimensions and symmetry of the lesion, thereby focusing on the dissimilarities of various classes based on symmetry, uniformity in texture and color, etc. Additionally, to take into account the variations in the boundaries of the lesions for different classes, we employ a gradient-based fusion of wavelet and soft attention-aided features to extract boundary information of skin lesions. We have tested our model on the multi-class and highly class-imbalanced dataset, called HAM10000, and achieved promising results, with a 91.17\% F1-score and 90.75\% accuracy. The code is made available at: https://github.com/AyushRoy2001/WAGF-Fusion.
Related papers
- LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification [41.94295877935867]
This paper introduces LASSO-MOGAT, a graph-based deep learning framework that integrates messenger RNA, microRNA, and DNA methylation data to classify 31 cancer types.
arXiv Detail & Related papers (2024-08-30T16:26:04Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
Deep convolution neural networks (CNN) have shown an excellent potential for data and image classification.
In this article, we inspect skin lesion classification problem using CNN techniques.
We present that prominent classification accuracy of lesion detection can be obtained by proper designing and applying of transfer learning framework.
arXiv Detail & Related papers (2024-04-01T15:06:20Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
We study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones.
Our work provides a complementary angle to dermatology AI for improving skin disease detection.
arXiv Detail & Related papers (2024-01-24T07:45:24Z) - PACS: Prediction and analysis of cancer subtypes from multi-omics data
based on a multi-head attention mechanism model [2.275409158519155]
We propose a supervised multi-head attention mechanism model (SMA) to classify cancer subtypes successfully.
The attention mechanism and feature sharing module of the SMA model can successfully learn the global and local feature information of multi-omics data.
The SMA model achieves the highest accuracy, F1 macroscopic, F1 weighted, and accurate classification of cancer subtypes in simulated, single-cell, and cancer multiomics datasets.
arXiv Detail & Related papers (2023-08-21T03:54:21Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
We propose a biophysical feature based machine learning method for breast cancer detection.
The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2022-07-13T23:53:09Z) - Multiple EffNet/ResNet Architectures for Melanoma Classification [3.047409448159345]
Melanoma is the most malignant skin tumor and usually cancerates from normal moles.
We propose a new melanoma classification model based on EffNet and Resnet.
Our model not only uses images within the same patient but also consider patient-level contextual information for better cancer prediction.
arXiv Detail & Related papers (2022-04-21T14:46:55Z) - New pyramidal hybrid textural and deep features based automatic skin
cancer classification model: Ensemble DarkNet and textural feature extractor [1.4502611532302039]
This research interests to overcome automatic skin cancer detection problem.
An automatic multilevel textural and deep features-based model is presented.
The chosen top 1000 features are classified using the 10-fold cross-validation technique.
arXiv Detail & Related papers (2022-03-28T20:53:09Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.