Nonlinearity of the Fidelity in Open Qudit Systems: Gate and Noise Dependence in High-dimensional Quantum Computing
- URL: http://arxiv.org/abs/2406.15141v3
- Date: Wed, 4 Sep 2024 11:09:40 GMT
- Title: Nonlinearity of the Fidelity in Open Qudit Systems: Gate and Noise Dependence in High-dimensional Quantum Computing
- Authors: Jean-Gabriel Hartmann, Denis Janković, Rémi Pasquier, Mario Ruben, Paul-Antoine Hervieux,
- Abstract summary: This paper investigates the Average Gate Fidelity (AGF) of single qudit systems under Markovian noise in the Lindblad formalism.
We derive general expressions for the perturbative expansion of the Average Gate Infidelity (AGI) in terms of the environmental coupling coefficient.
Our findings highlight the dependence of AGI on qudit dimensionality, quantum gate choice, and noise strength, providing critical insights for optimising quantum gate design and error correction protocols.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional quantum computing has generated significant interest due to its potential to address scalability and error correction challenges faced by traditional qubit-based systems. This paper investigates the Average Gate Fidelity (AGF) of single qudit systems under Markovian noise in the Lindblad formalism, extending previous work by developing a comprehensive theoretical framework for the calculation of higher-order correction terms. We derive general expressions for the perturbative expansion of the Average Gate Infidelity (AGI) in terms of the environmental coupling coefficient and validate these with extensive numerical simulations, emphasizing the transition from linear to nonlinear behaviour in the strong coupling regime. Our findings highlight the dependence of AGI on qudit dimensionality, quantum gate choice, and noise strength, providing critical insights for optimising quantum gate design and error correction protocols. Additionally, we utilise our framework to identify universal bounds for the AGI in the strong coupling regime and explore the practical implications for enhancing the performance of near-term qudit architectures. This study offers a robust foundation for future research and development in high-dimensional quantum computing, contributing to the advancement of robust, high-fidelity quantum operations.
Related papers
- Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers [0.0]
We develop a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware.
We demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems.
arXiv Detail & Related papers (2024-03-13T13:27:40Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Robust Control of Quantum Dynamics under Input and Parameter Uncertainty [0.0]
Engineering quantum systems remains challenging due to noise and uncertainties associated with the field and Hamiltonian parameters.
We extend and generalize the quantum control robustness analysis method to diverse quantum observables, gates and moments thereof.
We present a framework for achieving robust control via evolutionary open loop (model-based) and closed loop (model-free) approaches.
arXiv Detail & Related papers (2021-02-23T17:28:21Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Hybrid quantum variational algorithm for simulating open quantum systems
with near-term devices [0.0]
Hybrid quantum-classical (HQC) algorithms make it possible to use near-term quantum devices supported by classical computational resources.
We develop an HQC algorithm using an efficient variational optimization approach to simulate open system dynamics.
arXiv Detail & Related papers (2020-08-12T13:49:29Z) - Capturing Non-Markovian Dynamics on Near-Term Quantum Computers [0.0]
quantum algorithms for the treatment of open quantum systems (OQSs) have remained under-explored.
We present and validate a new quantum algorithm to treat non-Markovian dynamics in OQSs built on the Ensemble of Lindblad's Trajectories approach.
arXiv Detail & Related papers (2020-04-30T18:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.