Imaginarity of quantum channels: Refinement and Alternative
- URL: http://arxiv.org/abs/2405.06222v1
- Date: Fri, 10 May 2024 03:27:18 GMT
- Title: Imaginarity of quantum channels: Refinement and Alternative
- Authors: Xiangyu Chen, Qiang Lei,
- Abstract summary: We add strong monotonicity and convexity to the requirement of imaginarity measure of quantum channels to make the measure proper.
We present three imaginarity measures of quantum channels via on the robustness, the trace norm and entropy, respectively.
- Score: 6.570066787107033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At present, quantum channels have been widely concerned, and many ways to quantify quantum channels have been proposed, which has led to the generation of many resource theories for quantum channels. We add strong monotonicity and convexity to the requirement of imaginarity measure of quantum channels to make the measure proper. We also introduce an alternative framework to simplify the process of verifying whether a quantifier is a proper measure. We present three imaginarity measures of quantum channels via on the robustness, the trace norm and entropy, respectively. Some properties are also given.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Upper bounds on probabilities in channel measurements on qubit channels and their applications [0.0]
We derive the upper bounds of the probability in a channel measurement for specific classes of quantum channels.
These applications demonstrate the significance of the obtained upper bounds.
arXiv Detail & Related papers (2024-06-21T14:25:12Z) - Fundamental limitations on the recoverability of quantum processes [0.6990493129893111]
We determine fundamental limitations on how well the physical transformation on quantum channels can be undone or reversed.
We refine (strengthen) the quantum data processing inequality for quantum channels under the action of quantum superchannels.
We also provide a refined inequality for the entropy change of quantum channels under the action of an arbitrary quantum superchannel.
arXiv Detail & Related papers (2024-03-19T17:50:24Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Approximation of the Nearest Classical-Classical State to a Quantum
State [0.0]
A revolutionary step in computation is driven by quantumness or quantum correlations, which are permanent in entanglements but often in separable states.
The exact quantification of quantumness is an NP-hard problem; thus, we consider alternative approaches to approximate it.
We show that the objective value decreases along the flow by proofs and numerical results.
arXiv Detail & Related papers (2023-01-23T08:26:17Z) - Wasserstein Complexity of Quantum Circuits [10.79258896719392]
Given a unitary transformation, what is the size of the smallest quantum circuit that implements it?
This quantity, known as the quantum circuit complexity, is a fundamental property of quantum evolutions.
We show that our new measure also provides a lower bound for the experimental cost of implementing quantum circuits.
arXiv Detail & Related papers (2022-08-12T14:44:13Z) - On quantum channel capacities: an additive refinement [0.0]
Capacities of quantum channels are fundamental quantities in the theory of quantum information.
Asymptotic regularization is generically necessary making the study of capacities notoriously hard.
We prove additive quantities for quantum channel capacities that can be employed for quantum Shannon theorems.
arXiv Detail & Related papers (2022-05-15T07:21:38Z) - An alternative framework for quantifying coherence of quantum channels [0.5219568203653523]
We present an alternative framework for quantifying the coherence of quantum channels.
Based on the characteristics of the coherence of quantum channels and the additivity of independent channels, our framework provides an easier way to certify whether a function is a bona fide coherence measure of quantum channels.
arXiv Detail & Related papers (2022-04-19T03:45:40Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Characterizing quantum ensemble using geometric measure of quantum
coherence [1.5630592429258865]
We propose a quantumness quantifier for the quantum ensemble.
It satisfies the necessary axioms of a bonafide measure of quantumness.
We compute the quantumness of a few well-known ensembles.
arXiv Detail & Related papers (2021-04-19T07:37:27Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum reference frame transformations as symmetries and the paradox of
the third particle [0.0]
We show that quantum reference frames (QRF) transformations appear naturally as symmetries of simple physical systems.
We give an explicit description of the observables that are measurable by agents constrained by such quantum symmetries.
We apply our results to a puzzle known as the paradox of the third particle'
arXiv Detail & Related papers (2020-11-03T19:00:14Z) - Ternary and Binary Representation of Coordinate and Momentum in Quantum
Mechanics [0.0]
We consider a problem based on expanding quantum observables in series in powers of two and three analogous to the binary and ternary representations of real numbers.
The coefficients of the series ("digits") are, therefore, Hermitian operators.
We show that the binary and ternary expansions of quantum observables automatically leads to renormalization of some divergent integrals and series.
arXiv Detail & Related papers (2020-09-28T20:53:19Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Quantifying the particle aspect of quantum systems [0.31457219084519]
We discuss the possibility of a quantum system to exhibit properties akin to both the classically held notions of being a particle and a wave.
A conceptual foundation for the wave nature of a quantum state has recently been presented, through the notion of quantum coherence.
arXiv Detail & Related papers (2018-12-20T16:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.