論文の概要: Solving the Product Breakdown Structure Problem with constrained QAOA
- arxiv url: http://arxiv.org/abs/2406.15228v1
- Date: Fri, 21 Jun 2024 15:15:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:13:06.992499
- Title: Solving the Product Breakdown Structure Problem with constrained QAOA
- Title(参考訳): 制約付きQAOAによるプロダクトブレークダウン構造問題の解決
- Authors: René Zander, Raphael Seidel, Matteo Inajetovic, Niklas Steinmann, Matic Petrič,
- Abstract要約: 本稿では,産業関連製品ブレークダウン構造問題の解法を提案する。
我々の解は制約付きQAOAに基づいており、これは構成上、問題制約によって禁止される解を表すヒルベルト空間の一部を探ることはない。
実験により,本手法はスケーリング行動に非常に有利なだけでなく,バレン高原の負の効果も抑制できることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constrained optimization problems, where not all possible variable assignments are feasible solutions, comprise numerous practically relevant optimization problems such as the Traveling Salesman Problem (TSP), or portfolio optimization. Established methods such as quantum annealing or vanilla QAOA usually transform the problem statement into a QUBO (Quadratic Unconstrained Binary Optimization) form, where the constraints are enforced by auxiliary terms in the QUBO objective. Consequently, such approaches fail to utilize the additional structure provided by the constraints. In this paper, we present a method for solving the industry relevant Product Breakdown Structure problem. Our solution is based on constrained QAOA, which by construction never explores the part of the Hilbert space that represents solutions forbidden by the problem constraints. The size of the search space is thereby reduced significantly. We experimentally show that this approach has not only a very favorable scaling behavior, but also appears to suppress the negative effects of Barren Plateaus.
- Abstract(参考訳): 全ての可能な変数割り当てが実現可能なソリューションではないような制約付き最適化問題は、トラベルセールスマン問題(TSP)やポートフォリオ最適化など、多くの実用的な最適化問題を構成する。
量子アニーリング (quantum annealing) やバニラQAOA (vanilla QAOA) のような確立された手法は通常、QUBO(Quadratic Unconstrained Binary Optimization) 形式に変換される。
したがって、そのような手法は制約によって提供される付加的な構造を利用できない。
本稿では,産業関連製品破壊構造問題の解法を提案する。
我々の解は制約付きQAOAに基づいており、これは構成上、問題制約によって禁止される解を表すヒルベルト空間の一部を探ることはない。
これにより、探索空間のサイズが大幅に縮小される。
実験により,本手法はスケーリング行動に非常に有利なだけでなく,バレン高原の負の効果も抑制できることが示された。
関連論文リスト
- Convergence guarantee for linearly-constrained combinatorial optimization with a quantum alternating operator ansatz [0.0]
線形に制約された最適化問題のクラスを解く量子交互演算子アンサッツ(QAOA$+$)を提案する。
このクラスの問題に対して、回路層数が増加するにつれて、最適解に確実に収束する回路を考案する。
この分析はQAOA$+$の性能保証を線形に制約された問題のより一般的な集合に拡張し、将来の一般化のためのツールを提供する。
論文 参考訳(メタデータ) (2024-09-27T15:23:47Z) - Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory [53.64687146666141]
近年,反復を必要とせずにチャネル容量を計算できる解析手法が提案されている。
トヨタが提案した逆のEm-problemに注意を向けます。
逆の Em-problem の非定型式を導出する。
論文 参考訳(メタデータ) (2024-03-14T10:20:28Z) - Hybrid Quantum Algorithms integrating QAOA, Penalty Dephasing and Zeno
Effect for Solving Binary Optimization Problems with Multiple Constraints [5.259170150405252]
本稿では,制約のサブセットを解決するために標準イジング・ハミルトニアン(Ising Hamiltonian)を併用したハイブリッドフレームワークを提案する。
これらの非Ising制約の解決は、ペナルティの軽視または量子ゼノ効果によって達成される。
論文 参考訳(メタデータ) (2023-05-14T03:49:10Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
本稿では,変分量子アルゴリズムを用いた制約付き最適化問題の解法を提案する。
我々は、キャッシュマネジメント問題という、金融の極めて関連性の高い現実世界の問題について、我々の提案を検証した。
実験の結果, 実現したソリューションのコスト, 特に局所最小値の回避に関して, 大幅な改善が見られた。
論文 参考訳(メタデータ) (2023-02-08T17:09:20Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Constrained mixers for the quantum approximate optimization algorithm [55.41644538483948]
ヒルベルト空間全体の部分空間への発展を制限する混合作用素を構築するための枠組みを提案する。
我々は,「ワンホット」状態の部分空間を保存するために設計された「XY」ミキサーを,多くの計算基底状態によって与えられる部分空間の一般の場合に一般化する。
我々の分析は、現在知られているよりもCXゲートが少ない"XY"ミキサーのトロタライズも有効である。
論文 参考訳(メタデータ) (2022-03-11T17:19:26Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Modeling Linear Inequality Constraints in Quadratic Binary Optimization
for Variational Quantum Eigensolver [0.0]
本稿では, 変分量子固有解法における配向型変分形式の利用について紹介する。
通常、いくつかの最適化問題に現れる4つの制約がモデル化されている。
提案手法の主な利点は、変分形式のパラメータの数が一定であることである。
論文 参考訳(メタデータ) (2020-07-26T23:36:22Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - A Constraint Driven Solution Model for Discrete Domains with a Case
Study of Exam Timetabling Problems [6.788217433800101]
知的制約処理進化アルゴリズム (ICHEA) のバリエーションは, ベンチマーク試験の時間変化問題を解決するために実証されている。
ICHEAはまず、与えられた制約をすべて段階的に満たすために結婚間クロスオーバー演算子を使用し、その後、ソリューションを最適化するために従来の演算子と拡張演算子の組み合わせを使用する。
論文 参考訳(メタデータ) (2020-02-08T06:53:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。