論文の概要: Orangutan: A Multiscale Brain Emulation-Based Artificial Intelligence Framework for Dynamic Environments
- arxiv url: http://arxiv.org/abs/2406.15488v1
- Date: Tue, 18 Jun 2024 01:41:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 23:44:36.320086
- Title: Orangutan: A Multiscale Brain Emulation-Based Artificial Intelligence Framework for Dynamic Environments
- Title(参考訳): Orangutan: 動的環境のためのマルチスケール脳エミュレーションに基づく人工知能フレームワーク
- Authors: Yong Xie,
- Abstract要約: 本稿では,脳に触発された新しいAIフレームワーク,Orangutanを紹介する。
複数のスケールで生体脳の構造と計算機構をシミュレートする。
物体観察時の人眼球運動をシミュレートする感覚運動モデルを開発した。
- 参考スコア(独自算出の注目度): 2.8137865669570297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving General Artificial Intelligence (AGI) has long been a grand challenge in the field of AI, and brain-inspired computing is widely acknowledged as one of the most promising approaches to realize this goal. This paper introduces a novel brain-inspired AI framework, Orangutan. It simulates the structure and computational mechanisms of biological brains on multiple scales, encompassing multi-compartment neuron architectures, diverse synaptic connection modalities, neural microcircuits, cortical columns, and brain regions, as well as biochemical processes including facilitation, feedforward inhibition, short-term potentiation, and short-term depression, all grounded in solid neuroscience. Building upon these highly integrated brain-like mechanisms, I have developed a sensorimotor model that simulates human saccadic eye movements during object observation. The model's algorithmic efficacy was validated through testing with the observation of handwritten digit images.
- Abstract(参考訳): 汎用人工知能(AGI)の実現は、AI分野において長年大きな課題であり、脳にインスパイアされたコンピューティングは、この目標を達成する上で最も有望なアプローチの1つとして広く認められている。
本稿では,脳に触発された新しいAIフレームワーク,Orangutanを紹介する。
複数のスケールで生物の脳の構造と計算機構をシミュレートし、複数区画のニューロンアーキテクチャ、様々なシナプス接続の様相、神経回路、皮質の柱、脳の領域を包含し、また、促進、フィードフォワード阻害、短期的な増強、短期的なうつ病などの生化学的プロセスも含む。
この高度に統合された脳様機構を基盤として,物体観察時の人眼球運動をシミュレートする感覚運動モデルを開発した。
モデルのアルゴリズムの有効性は手書き桁画像の観察によって検証された。
関連論文リスト
- Towards Reverse-Engineering the Brain: Brain-Derived Neuromorphic Computing Approach with Photonic, Electronic, and Ionic Dynamicity in 3D integrated circuits [2.649646793770068]
人間の脳は、極度のエネルギー効率とスケールで膨大な学習能力を持ち、人工システムは一致していない。
本稿では,脳由来ニューロモルフィックコンピューティングシステムのプロトタイプを設計することで,脳のリバースエンジニアリングの可能性について議論する。
論文 参考訳(メタデータ) (2024-03-28T05:24:04Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
本論は,神経科学と認知心理学の手法を検討することによって,人工知能の探求に貢献することを目的とする。
深層学習モデルによって達成された印象的な進歩にもかかわらず、抽象的推論と因果的理解にはまだ欠点がある。
論文 参考訳(メタデータ) (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Digital twin brain: a bridge between biological intelligence and
artificial intelligence [12.55159053727258]
本稿では,生物と人工知能のギャップを埋めるトランスフォーメーションプラットフォームとして,Digital Twin Brain(DTB)を提案する。
DTBは、ツインニング過程の基本となる脳構造、脳機能を生成する底層モデル、幅広い応用の3つの中核要素から構成される。
論文 参考訳(メタデータ) (2023-08-03T03:36:22Z) - Neuromorphic Computing and Sensing in Space [69.34740063574921]
神経型コンピュータチップは、生物学的脳の構造を模倣するように設計されている。
ニューロモルフィックデバイスの低消費電力とエネルギー効率に重点を置くことは、宇宙応用には最適である。
論文 参考訳(メタデータ) (2022-12-10T07:46:29Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
現在の脳-コンピュータインターフェース(BCI)技術は主に治療結果に関するものである。
近年,脳信号のデコードには人工知能(AI)と機械学習(ML)技術が用いられている。
クローズドループ,インテリジェント,低消費電力,小型化されたニューラルインターフェースの開発を想定する。
論文 参考訳(メタデータ) (2022-10-04T08:35:34Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
1500万の画像テキストペアを事前訓練した,新たに設計されたマルチモーダル基礎モデルを提案する。
視覚的エンコーダも言語的エンコーダもマルチモーダルで訓練され,脳に近いことが判明した。
論文 参考訳(メタデータ) (2022-08-17T12:36:26Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Bio-inspired Gait Imitation of Hexapod Robot Using Event-Based Vision
Sensor and Spiking Neural Network [2.4603302139672003]
人間のような一部の動物は、学習をスピードアップするために周囲の個体を模倣します。
この模倣に基づく学習の複雑な問題は、視覚データと筋運動の関連性を形成する。
本稿では、ニューロモルフィックコンピューティングとイベントベースビジョンに基づくバイオインスパイアされたフィードフォワードアプローチを提案し、歩行模倣問題に対処する。
論文 参考訳(メタデータ) (2020-04-11T17:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。