論文の概要: Teaching LLMs to Abstain across Languages via Multilingual Feedback
- arxiv url: http://arxiv.org/abs/2406.15948v1
- Date: Sat, 22 Jun 2024 21:59:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:43:16.123014
- Title: Teaching LLMs to Abstain across Languages via Multilingual Feedback
- Title(参考訳): 多言語フィードバックによる言語横断のLLM教育
- Authors: Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Orevaoghene Ahia, Shuyue Stella Li, Vidhisha Balachandran, Sunayana Sitaram, Yulia Tsvetkov,
- Abstract要約: 多言語フィードバックは,多様な言語,文化,コミュニティ間の知識ギャップを識別する上で有効であることを示す。
大規模な実験により、多言語フィードバックアプローチは、様々な強いベースラインよりも優れていることが示された。
さらに分析したところ、多言語フィードバックは多言語話者に役立てるための効果的かつ公平な回避戦略であることがわかった。
- 参考スコア(独自算出の注目度): 40.84205285309612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilingual LLMs often have knowledge disparities across languages, with larger gaps in under-resourced languages. Teaching LLMs to abstain in the face of knowledge gaps is thus a promising strategy to mitigate hallucinations in multilingual settings. However, previous studies on LLM abstention primarily focus on English; we find that directly applying existing solutions beyond English results in up to 20.5% performance gaps between high and low-resource languages, potentially due to LLMs' drop in calibration and reasoning beyond a few resource-rich languages. To this end, we propose strategies to enhance LLM abstention by learning from multilingual feedback, where LLMs self-reflect on proposed answers in one language by generating multiple feedback items in related languages: we show that this helps identifying the knowledge gaps across diverse languages, cultures, and communities. Extensive experiments demonstrate that our multilingual feedback approach outperforms various strong baselines, achieving up to 9.2% improvement for low-resource languages across three black-box and open models on three datasets, featuring open-book, closed-book, and commonsense QA. Further analysis reveals that multilingual feedback is both an effective and a more equitable abstain strategy to serve diverse language speakers, and cultural factors have great impact on language selection and LLM abstention behavior, highlighting future directions for multilingual and multi-cultural reliable language modeling.
- Abstract(参考訳): マルチリンガル LLM は、しばしば言語間での知識格差があり、リソース不足の言語では大きなギャップがある。
したがって、LLMが知識ギャップに直面することを禁ずることは、多言語環境における幻覚を軽減するための有望な戦略である。
しかし、LLMの禁止に関する以前の研究は主に英語に焦点を合わせており、既存のソリューションを英語以外に直接適用すると、高リソース言語と低リソース言語の間に最大20.5%のパフォーマンスギャップが生じることが判明した。
この目的のために,多言語からのフィードバックから学習し,LLMが複数のフィードバック項目を関連言語で生成することで,一つの言語で提案された回答を自己認識する手法を提案し,多様な言語,文化,コミュニティ間の知識ギャップを識別する上で有効であることを示す。
大規模な実験により、我々の多言語フィードバックアプローチは、さまざまな強力なベースラインを上回り、オープンブック、クローズドブック、コモンセンスQAを備えた3つのデータセット上の3つのブラックボックスおよびオープンモデルで、9.2%の低リソース言語の改善を実現している。
さらに分析したところ、多言語フィードバックは多様な言語話者に役立てるための効果的かつ公平な棄権戦略であり、文化的要因は言語選択やLLMの棄権行動に大きな影響を与え、多言語および多文化の信頼できる言語モデリングの今後の方向性を強調している。
関連論文リスト
- Improving Bilingual Capabilities of Language Models to Support Diverse Linguistic Practices in Education [3.799331337558008]
大規模言語モデル(LLM)は、教育コンテンツの生成、インストラクターのフィードバックの提供、アセスメントにおける教師の作業量の削減を約束する。
本研究では,多言語大言語モデル(MLLM)がモノリンガル(英語のみ,スペイン語のみ)とバイリンガル(スパングリッシュ)にまたがって有効であることを示す。
論文 参考訳(メタデータ) (2024-11-06T23:16:25Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - MindMerger: Efficient Boosting LLM Reasoning in non-English Languages [26.334092384176518]
推論能力は大規模言語モデル(LLM)にとって不可欠である
我々は,多言語モデルからLLMと外部言語理解機能を融合したMindMergerを提案する。
MindMergerは、特に低リソース言語において、すべてのベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-05-27T17:41:54Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
この作業は、NLPタスクから実際のユーザクエリまで、評価を拡張します。
深い言語理解を必要とする文化関連のタスクでは、ネイティブ言語のプロンプトがより有望になる傾向があります。
論文 参考訳(メタデータ) (2024-03-15T12:47:39Z) - Exploring Multilingual Concepts of Human Value in Large Language Models: Is Value Alignment Consistent, Transferable and Controllable across Languages? [34.38469832305664]
本稿では,AIの安全性の重要性から,人間の価値観に関する概念(すなわち,価値の概念)に焦点を当てる。
我々はまず,LLMにおける価値概念の存在を多言語形式で実証的に確認した。
これらの概念の言語間特性に関するさらなる分析は、言語資源の相違から生じる3つの特徴を明らかにしている。
論文 参考訳(メタデータ) (2024-02-28T07:18:39Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - How Vocabulary Sharing Facilitates Multilingualism in LLaMA? [19.136382859468693]
大きな言語モデル(LLM)は英語のタスクに強いパフォーマンスを示すが、他の言語には制限がある。
本研究では,語彙共有の観点からLLMの多言語的能力について検討する。
論文 参考訳(メタデータ) (2023-11-15T16:13:14Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。