Multitype entanglement dynamics induced by exceptional points
- URL: http://arxiv.org/abs/2406.16009v2
- Date: Tue, 11 Feb 2025 08:40:17 GMT
- Title: Multitype entanglement dynamics induced by exceptional points
- Authors: Zigeng Li, Xinyao Huang, Hongyan Zhu, Guofeng Zhang, Fan Wang, Xiaolan Zhong,
- Abstract summary: We study a generic model composed of two coupled non-Hermitian qubits.
The diverse entanglement dynamics on the two sides of the original fourth-order EP (EP4') and second order EP (EP2) can be observed simultaneously.
Our study paves the way for the investigation of EP-induced quantum effects and applications of EP-related quantum technologies.
- Score: 9.033507137659411
- License:
- Abstract: As a most important feature of non-Hermitian systems, exceptional points (EPs) lead to a variety of unconventional phenomena and applications. Here, we study a generic model composed of two coupled non-Hermitian qubits, the EPs can be easily obtained in this system by adjusting the driving amplitude applied to the qubits. The diverse entanglement dynamics on the two sides of the original fourth-order EP (EP4') and second order EP (EP2) can be observed simultaneously in the weak coupling regime. With the increase of the coupling strength, the EP4' is replaced by an additional EP2, leading to the disappearance of the entanglement dynamics changing induced by EP4' in the strong coupling regime. Considering the case of Ising type interaction, we also realize EP-induced entanglement dynamics changing without the driving field. Our study paves the way for the investigation of EP-induced quantum effects and applications of EP-related quantum technologies.
Related papers
- Exceptional-Point-Induced Nonequilibrium Entanglement Dynamics in Bosonic Networks [0.0]
We investigate how exceptional points (EPs) control multimode entanglement in bosonic chains.
Our findings provide a pathway to leveraging EPs for entanglement control and exhibit the potential of non-Hermitian physics in advancing quantum technologies.
arXiv Detail & Related papers (2025-02-07T03:52:29Z) - Programmable simulation of high-order exceptional point with a trapped ion [20.656857180988926]
We experimentally demonstrate a native programmable control to simulate a high-order non-Hermitian Hamiltonian in a multi-dimensional trapped ion system.
Our results pave the way for scalable quantum simulation of high-dimensional dissipative systems.
arXiv Detail & Related papers (2024-12-13T01:00:22Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) and their applications have been extensively studied.
We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.
We demonstrate that these EPs signify transitions between different topological classes.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Parity-time-symmetric two-qubit system: entanglement and sensing [0.0]
We study exceptional-point effects and quantum sensing in a parity-time (PT)-symmetric two-qubit system with the Ising-type interaction.
We show that entanglement can be generated more quickly than the corresponding Hermitian system.
arXiv Detail & Related papers (2023-05-30T13:51:49Z) - Higher-order exceptional point in a blue-detuned non-Hermitian cavity
optomechanical system [5.001077638364239]
We propose a non-Hermitian three-mode optomechanical system in the blue-sideband regime for predicting the third-order EP (EP3)
For the gain (loss) MR, we find only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength.
Our proposal provides a potential way to predict higher-order EPs or multiple EP2s and study multimode quantum squeezing around EPs.
arXiv Detail & Related papers (2022-05-15T05:20:59Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Observation of exceptional point in a PT broken non-Hermitian system
simulated using a quantum circuit [3.3229068574143534]
We propose an extendable method to simulate non-Hermitian systems on the quantum circuits.
Our model is capable of simulating large scale systems with higher-order EPs.
arXiv Detail & Related papers (2020-05-28T07:59:58Z) - Continual Weight Updates and Convolutional Architectures for Equilibrium
Propagation [69.87491240509485]
Equilibrium Propagation (EP) is a biologically inspired alternative algorithm to backpropagation (BP) for training neural networks.
We propose a discrete-time formulation of EP which enables to simplify equations, speed up training and extend EP to CNNs.
Our CNN model achieves the best performance ever reported on MNIST with EP.
arXiv Detail & Related papers (2020-04-29T12:14:06Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.