Competing excitation quenching and charge exchange in ultracold Li-Ba$^+$ collisions
- URL: http://arxiv.org/abs/2406.16017v1
- Date: Sun, 23 Jun 2024 05:23:59 GMT
- Title: Competing excitation quenching and charge exchange in ultracold Li-Ba$^+$ collisions
- Authors: Xiaodong Xing, Pascal Weckesser, Fabian Thielemann, Tibor Jónás, Romain Vexiau, Nadia Bouloufa-Maafa, Eliane Luc-Koenig, Kirk W. Madison, Andrea Orbán, Ting Xie, Tobias Schaetz, Olivier Dulieu,
- Abstract summary: Hybrid atom-ion systems are a rich and powerful platform for studying chemical reactions.
We study the collisions of a single $138$Ba$+$ ion prepared in a $5d,2D_3/2,5/2$ metastable states with a ground state $6$Li gas near quantum degeneracy.
- Score: 0.8424060927340924
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hybrid atom-ion systems are a rich and powerful platform for studying chemical reactions, as they feature both excellent control over the electronic state preparation and readout as well as a versatile tunability over the scattering energy, ranging from the few-partial wave regime to the quantum regime. In this work, we make use of these excellent control knobs, and present a joint experimental and theoretical study of the collisions of a single $^{138}$Ba$^+$ ion prepared in the $5d\,^2D_{3/2,5/2}$ metastable states with a ground state $^6$Li gas near quantum degeneracy. We show that in contrast to previously reported atom-ion mixtures, several non-radiative processes, including charge exchange, excitation exchange and quenching, compete with each other due to the inherent complexity of the ion-atom molecular structure. We present a full quantum model based on high-level electronic structure calculations involving spin-orbit couplings. Results are in excellent agreement with observations, highlighting the strong coupling between the internal angular momenta and the mechanical rotation of the colliding pair, which is relevant in any other hybrid system composed of an alkali-metal atom and an alkaline-earth ion.
Related papers
- Fermi polaron in atom-ion hybrid systems [0.0]
We investigate the ionic Fermi polaron consisting of a charged impurity interacting with a polarized Fermi bath.
We find a smooth polaron-molecule transition for strong coupling, in contrast with the neutral case, where the transition smoothens only for finite temperature and finite impurity density.
This study may provide valuable insights into alternative solid-state systems such as Fermi excitons polarons in atomically thin semiconductors.
arXiv Detail & Related papers (2024-01-10T18:45:02Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Atom-Mechanical Hong-Ou-Mandel Interference [0.0]
We propose an experimental test of Hong-Ou-Mandel interference between single phononic excitation and single collective excitation of atoms.
A single optical pulse is sufficient to build a hybrid quantum-nondemolition gate to observe the bunching of such different quanta.
arXiv Detail & Related papers (2021-10-13T13:18:58Z) - Observation of Feshbach resonances between a single ion and ultracold
atoms [0.0]
Trapped atomic and molecular systems, neutral and charged, are at the forefront of quantum science.
Here we demonstrate Feshbach resonances between ions and atoms, using magnetically tunable interactions between $138$Ba$+$ ions and $6$Li atoms.
arXiv Detail & Related papers (2021-05-19T20:15:17Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
We propose the control of single- and two-body Jaynes-Cummings systems in a non-equilibrium scenario.
Our findings provide a systematic approach to manipulate polaritons interchange, that we apply to reveal new insights in the transition between Mott Insulator- and Super-like states.
arXiv Detail & Related papers (2020-10-07T16:31:03Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Ionic polaron in a Bose-Einstein condensate [0.0]
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects.
We show that even in a relatively simple setup the competition of length scales gives rise to a highly correlated state.
Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
arXiv Detail & Related papers (2020-05-25T11:10:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.