LGS: A Light-weight 4D Gaussian Splatting for Efficient Surgical Scene Reconstruction
- URL: http://arxiv.org/abs/2406.16073v1
- Date: Sun, 23 Jun 2024 10:49:39 GMT
- Title: LGS: A Light-weight 4D Gaussian Splatting for Efficient Surgical Scene Reconstruction
- Authors: Hengyu Liu, Yifan Liu, Chenxin Li, Wuyang Li, Yixuan Yuan,
- Abstract summary: We introduce a Lightweight 4D Gaussian Splatting framework (LGS) for dynamic endoscopic reconstruction.
To minimize the redundancy of Gaussian quantities, we propose Deformation-Aware Pruning.
We also simplify the representation of textures and lighting in non-crucial areas by pruning the dimensions of Gaussian attributes.
- Score: 33.794584735264884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of 3D Gaussian Splatting (3D-GS) techniques and their dynamic scene modeling variants, 4D-GS, offers promising prospects for real-time rendering of dynamic surgical scenarios. However, the prerequisite for modeling dynamic scenes by a large number of Gaussian units, the high-dimensional Gaussian attributes and the high-resolution deformation fields, all lead to serve storage issues that hinder real-time rendering in resource-limited surgical equipment. To surmount these limitations, we introduce a Lightweight 4D Gaussian Splatting framework (LGS) that can liberate the efficiency bottlenecks of both rendering and storage for dynamic endoscopic reconstruction. Specifically, to minimize the redundancy of Gaussian quantities, we propose Deformation-Aware Pruning by gauging the impact of each Gaussian on deformation. Concurrently, to reduce the redundancy of Gaussian attributes, we simplify the representation of textures and lighting in non-crucial areas by pruning the dimensions of Gaussian attributes. We further resolve the feature field redundancy caused by the high resolution of 4D neural spatiotemporal encoder for modeling dynamic scenes via a 4D feature field condensation. Experiments on public benchmarks demonstrate efficacy of LGS in terms of a compression rate exceeding 9 times while maintaining the pleasing visual quality and real-time rendering efficiency. LGS confirms a substantial step towards its application in robotic surgical services.
Related papers
- 4D Scaffold Gaussian Splatting for Memory Efficient Dynamic Scene Reconstruction [27.455934322535853]
This paper proposes a 4D anchor-based framework that retains visual quality and rendering speed of 4D Gaussians while reducing storage costs.
Experimental results demonstrate that our method achieves state-of-the-art visual quality and 97.8% storage reduction over 4DGS.
arXiv Detail & Related papers (2024-11-26T02:22:07Z) - MEGA: Memory-Efficient 4D Gaussian Splatting for Dynamic Scenes [49.36091070642661]
This paper introduces a memory-efficient framework for 4DGS.
It achieves a storage reduction by approximately 190$times$ and 125$times$ on the Technicolor and Neural 3D Video datasets.
It maintains comparable rendering speeds and scene representation quality, setting a new standard in the field.
arXiv Detail & Related papers (2024-10-17T14:47:08Z) - L3DG: Latent 3D Gaussian Diffusion [74.36431175937285]
L3DG is the first approach for generative 3D modeling of 3D Gaussians through a latent 3D Gaussian diffusion formulation.
We employ a sparse convolutional architecture to efficiently operate on room-scale scenes.
By leveraging the 3D Gaussian representation, the generated scenes can be rendered from arbitrary viewpoints in real-time.
arXiv Detail & Related papers (2024-10-17T13:19:32Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
We propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance.
In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2024-08-07T14:56:34Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas.
We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas.
arXiv Detail & Related papers (2024-06-05T12:07:39Z) - EfficientGS: Streamlining Gaussian Splatting for Large-Scale High-Resolution Scene Representation [29.334665494061113]
'EfficientGS' is an advanced approach that optimize 3DGS for high-resolution, large-scale scenes.
We analyze the densification process in 3DGS and identify areas of Gaussian over-proliferation.
We propose a selective strategy, limiting Gaussian increase to key redundant primitives, thereby enhancing the representational efficiency.
arXiv Detail & Related papers (2024-04-19T10:32:30Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - EndoGaussian: Real-time Gaussian Splatting for Dynamic Endoscopic Scene
Reconstruction [36.35631592019182]
We introduce EndoGaussian, a real-time endoscopic scene reconstruction framework built on 3D Gaussian Splatting (3DGS)
Our framework significantly boosts the rendering speed to a real-time level.
Experiments on public datasets demonstrate our efficacy against prior SOTAs in many aspects.
arXiv Detail & Related papers (2024-01-23T08:44:26Z) - HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian
Splatting [48.59338619051709]
HiFi4G is an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage.
It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame.
arXiv Detail & Related papers (2023-12-06T12:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.