論文の概要: Imperative Learning: A Self-supervised Neural-Symbolic Learning Framework for Robot Autonomy
- arxiv url: http://arxiv.org/abs/2406.16087v2
- Date: Sun, 7 Jul 2024 03:20:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 01:00:13.587816
- Title: Imperative Learning: A Self-supervised Neural-Symbolic Learning Framework for Robot Autonomy
- Title(参考訳): Imperative Learning:ロボット自律性のための自己教師型ニューラルネットワーク学習フレームワーク
- Authors: Chen Wang, Kaiyi Ji, Junyi Geng, Zhongqiang Ren, Taimeng Fu, Fan Yang, Yifan Guo, Haonan He, Xiangyu Chen, Zitong Zhan, Qiwei Du, Shaoshu Su, Bowen Li, Yuheng Qiu, Yi Du, Qihang Li, Yifan Yang, Xiao Lin, Zhipeng Zhao,
- Abstract要約: 我々は,ロボット自律のための自己教師型ニューラルシンボリック(NeSy)計算フレームワーク,インペラティブラーニング(IL)を導入する。
ILを2段階最適化(BLO)として定式化し、3つのモジュール間の相互学習を可能にする。
ILはロボットの自律性を大幅に向上させ、多様な領域にわたるさらなる研究を促進することを期待している。
- 参考スコア(独自算出の注目度): 31.818923556912495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven methods such as reinforcement and imitation learning have achieved remarkable success in robot autonomy. However, their data-centric nature still hinders them from generalizing well to ever-changing environments. Moreover, collecting large datasets for robotic tasks is often impractical and expensive. To overcome these challenges, we introduce a new self-supervised neural-symbolic (NeSy) computational framework, imperative learning (IL), for robot autonomy, leveraging the generalization abilities of symbolic reasoning. The framework of IL consists of three primary components: a neural module, a reasoning engine, and a memory system. We formulate IL as a special bilevel optimization (BLO), which enables reciprocal learning over the three modules. This overcomes the label-intensive obstacles associated with data-driven approaches and takes advantage of symbolic reasoning concerning logical reasoning, physical principles, geometric analysis, etc. We discuss several optimization techniques for IL and verify their effectiveness in five distinct robot autonomy tasks including path planning, rule induction, optimal control, visual odometry, and multi-robot routing. Through various experiments, we show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
- Abstract(参考訳): 強化や模倣学習のようなデータ駆動の手法は、ロボットの自律性において顕著な成功を収めた。
しかし、データ中心の性質は、常に変化する環境への一般化を妨げている。
さらに、ロボットタスクのための大規模なデータセットの収集は非現実的で高価であることが多い。
これらの課題を克服するために,ロボット自律のための自己教師型ニューラルシンボリック(NeSy)計算フレームワーク,インペラティブラーニング(IL)を導入し,シンボル推論の一般化能力を活用する。
ILのフレームワークは、ニューラルモジュール、推論エンジン、メモリシステムという3つの主要コンポーネントで構成されている。
ILを特別な二段階最適化(BLO)として定式化し、3つのモジュール間の相互学習を可能にする。
これは、データ駆動アプローチに関連するラベル集約的な障害を克服し、論理的推論、物理原理、幾何学的解析などに関する象徴的推論を活用する。
本稿では,ILの最適化手法について議論し,経路計画,ルール誘導,最適制御,視覚計測,マルチロボットルーティングを含む5つのロボット自律作業において,その有効性を検証する。
様々な実験を通して、ILはロボットの自律能力を大幅に向上させ、様々な領域にわたるさらなる研究を促進することを期待する。
関連論文リスト
- A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
近年のコンピュータビジョン,自然言語処理,マルチモーダリティ学習の進歩は,基礎モデルが特定のタスクに対して超人的能力を持つことを示している。
この調査は、ロボット工学の基礎モデルの包括的で最新の概要を提供し、自律的な操作に焦点を当て、高レベルの計画と低レベルの制御を包含することを目的としている。
論文 参考訳(メタデータ) (2024-02-04T07:55:01Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Towards open and expandable cognitive AI architectures for large-scale
multi-agent human-robot collaborative learning [5.478764356647437]
多エージェントLfDロボット学習のための新しい認知アーキテクチャを導入し、オープンでスケーラブルで拡張可能なロボットシステムの信頼性の高い展開を可能にする。
この概念化は、ロボットプラットフォームのネットワークの端ノードで動作する複数のAI駆動の認知プロセスを採用することに依存している。
提案フレームワークの適用性は,実世界の産業ケーススタディの例を用いて説明できる。
論文 参考訳(メタデータ) (2020-12-15T09:49:22Z) - REAL-X -- Robot open-Ended Autonomous Learning Architectures: Achieving
Truly End-to-End Sensorimotor Autonomous Learning Systems [0.0]
先程提案されたREALコンペティションによる課題について検討する。
本稿では,ベンチマークの異なるバージョンを解くことができるREAL-Xロボットアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-27T18:12:06Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。