論文の概要: Predefined Prototypes for Intra-Class Separation and Disentanglement
- arxiv url: http://arxiv.org/abs/2406.16145v1
- Date: Sun, 23 Jun 2024 15:52:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 18:44:42.042195
- Title: Predefined Prototypes for Intra-Class Separation and Disentanglement
- Title(参考訳): クラス内分離・アンタングル化のための事前定義されたプロトタイプ
- Authors: Antonio Almudévar, Théo Mariotte, Alfonso Ortega, Marie Tahon, Luis Vicente, Antonio Miguel, Eduardo Lleida,
- Abstract要約: 原型学習は、クラスの埋め込みがクラスタ化される点(プロトタイプと呼ぶ)があるという考えに基づいている。
我々は、トレーニングパイプラインを簡素化し、異なる利点をもたらす、人間の特定基準に従ってプロトタイプを事前定義することを提案する。
- 参考スコア(独自算出の注目度): 10.005120138175206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prototypical Learning is based on the idea that there is a point (which we call prototype) around which the embeddings of a class are clustered. It has shown promising results in scenarios with little labeled data or to design explainable models. Typically, prototypes are either defined as the average of the embeddings of a class or are designed to be trainable. In this work, we propose to predefine prototypes following human-specified criteria, which simplify the training pipeline and brings different advantages. Specifically, in this work we explore two of these advantages: increasing the inter-class separability of embeddings and disentangling embeddings with respect to different variance factors, which can translate into the possibility of having explainable predictions. Finally, we propose different experiments that help to understand our proposal and demonstrate empirically the mentioned advantages.
- Abstract(参考訳): 原型学習は、クラスの埋め込みがクラスタ化される点(プロトタイプと呼ぶ)があるという考えに基づいている。
ラベル付きデータが少ないシナリオや説明可能なモデルの設計において、有望な結果を示している。
通常、プロトタイプはクラスの埋め込みの平均として定義されるか、トレーニング可能なように設計されている。
本研究では,トレーニングパイプラインを簡素化し,異なる利点をもたらす人為的基準に従ってプロトタイプを事前定義することを提案する。
具体的には, 組込みのクラス間分離性の向上と, 差分要因の相違による組込みの切り離し, 説明可能な予測が可能となる2つの利点について検討する。
最後に,提案提案を理解する上で有効な実験を提案し,その利点を実証的に示す。
関連論文リスト
- Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation [7.372346036256517]
意味的セグメンテーションを解釈可能なものにするための、有望なアプローチとして、プロトタイプ的な部分学習が登場している。
本稿では,多スケール画像表現を利用した意味的セグメンテーションの解釈手法を提案する。
Pascal VOC,Cityscapes,ADE20Kで行った実験により,提案手法はモデルの疎結合性を高め,既存のプロトタイプ手法よりも解釈可能性を高め,非解釈可能なモデルとの性能ギャップを狭めることを示した。
論文 参考訳(メタデータ) (2024-09-14T17:52:59Z) - Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective [84.24742313520811]
検索タスクとしてのPerson Re-IDentification(Re-ID)は,過去10年間で大きな発展を遂げてきた。
本稿では,新しいベースライン ProNet を提案する。
4つのベンチマークの実験では、提案したProNetは単純だが有効であり、以前のベースラインを大きく上回っている。
論文 参考訳(メタデータ) (2023-08-21T13:38:10Z) - Learning to Select Prototypical Parts for Interpretable Sequential Data
Modeling [7.376829794171344]
本稿では,原型概念の線形結合を用いた自己説明選択モデル(SESM)を提案する。
より良い解釈可能性を得るために,多様性,安定性,局所性など,複数の制約をトレーニング対象として設計する。
論文 参考訳(メタデータ) (2022-12-07T01:42:47Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Interpretable Image Classification with Differentiable Prototypes
Assignment [7.660883761395447]
クラスが共有するプロトタイプのプールを備えた解釈可能な画像分類モデルであるProtoPoolを紹介する。
プロトタイプを特定のクラスに完全に微分可能な割り当てを導入することで得られる。
我々は,CUB-200-2011とStanford Carsのデータセットにおいて,ProtoPoolが最先端の精度を得ることを示す。
論文 参考訳(メタデータ) (2021-12-06T10:03:32Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - Prototype Completion for Few-Shot Learning [13.63424509914303]
少数ショット学習は、いくつかの例で新しいクラスを認識することを目的としている。
事前学習に基づく手法は,特徴抽出器を事前学習し,最寄りのセントロイド型メタラーニングを通して微調整することで,この問題に効果的に対処する。
本稿では,完成度に基づくメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-11T03:44:00Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
数発のセグメンテーションのための確率的潜在変数フレームワークである注意型プロトタイプ推論(API)を提案する。
我々は各オブジェクトカテゴリのプロトタイプを表現するためにグローバル潜在変数を定義し、確率分布としてモデル化する。
我々は4つのベンチマークで広範な実験を行い、提案手法は最先端のプロトタイプベースの手法よりも、少なくとも競争力があり、しばしば優れた性能が得られる。
論文 参考訳(メタデータ) (2021-05-14T06:58:44Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
我々は,試行錯誤の予測に例ベースの説明を与えることのできる,プロトタイプベースの学生ネットワークのより広範な採用を論じる。
類似カーネル以外のプロトタイプベースのネットワークは,分類精度を損なうことなく,有意義な説明と有望な外乱検出結果が得られることを示す。
論文 参考訳(メタデータ) (2020-11-11T05:58:17Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。