論文の概要: Trace is the New AutoDiff -- Unlocking Efficient Optimization of Computational Workflows
- arxiv url: http://arxiv.org/abs/2406.16218v1
- Date: Sun, 23 Jun 2024 21:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 18:25:12.067378
- Title: Trace is the New AutoDiff -- Unlocking Efficient Optimization of Computational Workflows
- Title(参考訳): Traceが新しいAutoDiff -- 計算ワークフローの効率的な最適化をアンロックする
- Authors: Ching-An Cheng, Allen Nie, Adith Swaminathan,
- Abstract要約: 我々は、コーディングアシスタント、ロボット、コピロなどのAIシステムの設計と更新を自動化することによって動機付けられた最適化問題のクラスについて研究する。
本稿では,AIシステムの計算ワークフローをニューラルネットワークに似たグラフとして扱うエンドツーエンド最適化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.89948665187903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a class of optimization problems motivated by automating the design and update of AI systems like coding assistants, robots, and copilots. We propose an end-to-end optimization framework, Trace, which treats the computational workflow of an AI system as a graph akin to neural networks, based on a generalization of back-propagation. Optimization of computational workflows often involves rich feedback (e.g. console output or user's responses), heterogeneous parameters (e.g. prompts, hyper-parameters, codes), and intricate objectives (beyond maximizing a score). Moreover, its computation graph can change dynamically with the inputs and parameters. We frame a new mathematical setup of iterative optimization, Optimization with Trace Oracle (OPTO), to capture and abstract these properties so as to design optimizers that work across many domains. In OPTO, an optimizer receives an execution trace along with feedback on the computed output and updates parameters iteratively. Trace is the tool to implement OPTO in practice. Trace has a Python interface that efficiently converts a computational workflow into an OPTO instance using a PyTorch-like interface. Using Trace, we develop a general-purpose LLM-based optimizer called OptoPrime that can effectively solve OPTO problems. In empirical studies, we find that OptoPrime is capable of first-order numerical optimization, prompt optimization, hyper-parameter tuning, robot controller design, code debugging, etc., and is often competitive with specialized optimizers for each domain. We believe that Trace, OptoPrime and the OPTO framework will enable the next generation of interactive agents that automatically adapt using various kinds of feedback. Website: https://microsoft.github.io/Trace
- Abstract(参考訳): 我々は、コーディングアシスタント、ロボット、コピロなどのAIシステムの設計と更新を自動化することによって動機付けられた最適化問題のクラスについて研究する。
本稿では、バックプロパゲーションの一般化に基づいて、AIシステムの計算ワークフローをニューラルネットワークに似たグラフとして扱うエンドツーエンド最適化フレームワークであるTraceを提案する。
計算ワークフローの最適化には、リッチなフィードバック(コンソール出力やユーザの応答など)、異種パラメータ(例えばプロンプト、ハイパーパラメータ、コード)、複雑な目的(スコアの最大化に加えて)が含まれる。
さらに、その計算グラフは入力とパラメータによって動的に変化する。
我々は、反復最適化の新しい数学的設定、Trace Oracle (OPTO) を用いて、これらのプロパティをキャプチャして抽象化し、多くのドメインで機能する最適化を設計する。
OPTOでは、オプティマイザは計算された出力に対するフィードバックとともに実行トレースを受け取り、パラメータを反復的に更新する。
Traceは実際にOPTOを実装するツールです。
TraceにはPythonインターフェースがあり、PyTorchのようなインターフェイスを使って計算ワークフローをOPTOインスタンスに変換する。
Trace を用いて,OPTO 問題を効果的に解決できる汎用 LLM ベースのオプティマイザ OptoPrime を開発した。
実証実験では,OptoPrimeは1次数値最適化,プロンプト最適化,ハイパーパラメータチューニング,ロボットコントローラ設計,コードデバッギングなどが可能であり,各ドメインの特別なオプティマイザと競合することが多い。
Trace、OptoPrime、OPTOフレームワークは、様々な種類のフィードバックを使って自動的に適応するインタラクティブエージェントの次世代を可能にすると信じています。
ウェブサイト:https://microsoft.github.io/Trace
関連論文リスト
- Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - MADA: Meta-Adaptive Optimizers through hyper-gradient Descent [73.1383658672682]
メタ適応(MADA)は、複数の既知の収束を一般化し、トレーニング中に最も適した収束を動的に学習できる統合フレームワークである。
私たちは、MADAを視覚や言語タスクに関する他の人気と経験的に比較し、MADAがAdamや他の人気を一貫して上回っていることに気付きました。
AVGradは最大演算子を平均演算子に置き換えたもので、高次最適化に適している。
論文 参考訳(メタデータ) (2024-01-17T00:16:46Z) - VeLO: Training Versatile Learned Optimizers by Scaling Up [67.90237498659397]
私たちは、ディープラーニングの成功の背後にある同じスケーリングアプローチを活用して、汎用性を学びます。
私たちは、パラメータの更新を取り込み出力する小さなニューラルネットワークであるディープラーニングのためのインジェクションをトレーニングします。
学習したメタトレーニングコード、関連するトレインテストデータ、およびvelo-code.ioのベースラインを備えた広範なベンチマークスイートをオープンソースとして公開しています。
論文 参考訳(メタデータ) (2022-11-17T18:39:07Z) - Learning to Optimize Quasi-Newton Methods [22.504971951262004]
本稿では、最適化時に最適な事前条件をオンラインで学習するLODOと呼ばれる新しい機械学習を提案する。
他のL2Oメソッドとは異なり、LODOはトレーニングタスクの配布にメタトレーニングを一切必要としない。
この勾配は, 雑音場における逆 Hessian を近似し, 幅広い逆 Hessian を表現可能であることを示す。
論文 参考訳(メタデータ) (2022-10-11T03:47:14Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - Automatic Tuning of Tensorflow's CPU Backend using Gradient-Free
Optimization Algorithms [0.6543507682026964]
Deep Learning (DL) アプリケーションは、ジーンやPyTorchといったDLライブラリやフレームワークを使って構築されている。
これらのフレームワークは複雑なパラメータを持ち、優れたトレーニングを得るために調整する。
そこで,本論文では,トレーニングと推論性能を改善するために,DLフレームワークのパラメータをチューニングする問題をブラックボックス問題として扱う。
論文 参考訳(メタデータ) (2021-09-13T19:10:23Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
人口ベースのブラックボックス一般化を推論するメタラーニングの利用を提案する。
メタロス関数は,学習アルゴリズムが検索動作を変更することを促進し,新たなコンテキストに容易に適合できることを示す。
論文 参考訳(メタデータ) (2021-03-05T08:13:25Z) - Transferable Graph Optimizers for ML Compilers [18.353830282858834]
計算グラフ最適化(GO)のためのエンドツーエンドで転送可能な深層強化学習法を提案する。
GOは個々のノードに対して自動回帰ではなく,グラフ全体の決定を生成する。
GOは、人間の専門家よりも21%改善し、先行技術よりも18%改善し、15倍早く収束する。
論文 参考訳(メタデータ) (2020-10-21T20:28:33Z) - Tasks, stability, architecture, and compute: Training more effective
learned optimizers, and using them to train themselves [53.37905268850274]
我々は、自動正規化を実現するために、バリデーション損失などの追加機能にアクセス可能な、階層的で階層的なニューラルネットワークパラメータ化を導入した。
ほとんどの学習は単一のタスク、あるいは少数のタスクでトレーニングされています。
何千ものタスクをトレーニングし、桁違いに計算量を増やし、その結果、目に見えないタスクよりも優れたパフォーマンスの一般化を実現します。
論文 参考訳(メタデータ) (2020-09-23T16:35:09Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。