論文の概要: Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation
- arxiv url: http://arxiv.org/abs/2406.16356v1
- Date: Mon, 24 Jun 2024 06:53:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 15:53:24.611114
- Title: Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation
- Title(参考訳): ストーリーエンディング生成における大規模言語モデルの指示追従能力の評価
- Authors: Rem Hida, Junki Ohmura, Toshiyuki Sekiya,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の物語生成の文脈における指示追従能力の評価に焦点をあてる。
本稿では,機械読影理解モデル(MRC)を用いた自動評価パイプラインを提案する。
- 参考スコア(独自算出の注目度): 2.4889060833127665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction-tuned Large Language Models (LLMs) have achieved remarkable performance across various benchmark tasks. While providing instructions to LLMs for guiding their generations is user-friendly, assessing their instruction-following capabilities is still unclarified due to a lack of evaluation metrics. In this paper, we focus on evaluating the instruction-following ability of LLMs in the context of story-ending generation, which requires diverse and context-specific instructions. We propose an automatic evaluation pipeline that utilizes a machine reading comprehension (MRC) model to determine whether the generated story-ending reflects instruction. Our findings demonstrate that our proposed metric aligns with human evaluation. Furthermore, our experiments confirm that recent open-source LLMs can achieve instruction-following performance close to GPT-3.5, as assessed through automatic evaluation.
- Abstract(参考訳): 命令調整型大規模言語モデル(LLM)は、様々なベンチマークタスクで顕著なパフォーマンスを実現している。
世代を導くためのLSMに命令を提供するのはユーザフレンドリだが、評価基準の欠如により、命令フォロー機能の評価はまだ明らかになっていない。
本稿では,多様かつ文脈依存的な指示を必要とする物語生成の文脈において,LLMの指示追従能力を評価することに焦点を当てる。
本稿では,機械読影理解モデル(MRC)を用いた自動評価パイプラインを提案する。
その結果,提案手法は人間の評価と一致していることがわかった。
さらに,最近のオープンソースのLCMでは,GPT-3.5に近い命令追従性能を自動評価により達成できることを確認した。
関連論文リスト
- Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences [11.23629471911503]
EvalGenは、評価基準の生成とアサーションの実装において、ユーザに自動アシストを提供する。
質的研究は、EvalGenに対する全体的なサポートを見出すが、主観性と反復的なアライメントのプロセスを強調している。
ユーザはアウトプットを格付けする基準が必要ですが、アウトプットのグレードは、ユーザが基準を定義するのに役立つのです。
論文 参考訳(メタデータ) (2024-04-18T15:45:27Z) - How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs? [3.1706553206969925]
このような手法のメタ評価を行い、その信頼性を幅広いタスクにわたって評価する。
自動評価手法は、特定の条件下で人間の評価を近似することができるが、その妥当性は文脈に依存している。
論文 参考訳(メタデータ) (2024-02-16T15:48:33Z) - SemScore: Automated Evaluation of Instruction-Tuned LLMs based on
Semantic Textual Similarity [3.3162484539136416]
本稿では,SemScoreと呼ばれる簡易な評価尺度を提案する。
意味的テキスト類似度(STS)を用いたモデル出力とゴールドターゲット応答の比較
提案したSemScore測定基準は,人間の評価と相関する点において,より複雑な評価指標よりも優れていることが判明した。
論文 参考訳(メタデータ) (2024-01-30T14:52:50Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
FLASKは、人間に基づく評価とモデルに基づく評価の両方のためのきめ細かい評価プロトコルである。
モデル性能の全体像を得るためには,評価の微粒化が重要であることを実験的に観察する。
論文 参考訳(メタデータ) (2023-07-20T14:56:35Z) - DecompEval: Evaluating Generated Texts as Unsupervised Decomposed
Question Answering [95.89707479748161]
自然言語生成タスク(NLG)の既存の評価指標は、一般化能力と解釈可能性の課題に直面している。
本稿では,NLG評価を命令型質問応答タスクとして定式化するDecompEvalというメトリクスを提案する。
本稿では,文の質を測る問合せに,文の質を問う指導スタイルの質問を分解する。
PLMが生成した回答を証拠として再検討し、評価結果を得る。
論文 参考訳(メタデータ) (2023-07-13T16:16:51Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
大規模言語モデル(LLM)は、タスク命令のみを提供する場合、目に見えないタスクに対して例外的な性能を示す。
LLM評価の結果は、専門家による評価の結果と一致していることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。