The MRI Scanner as a Diagnostic: Image-less Active Sampling
- URL: http://arxiv.org/abs/2406.16754v1
- Date: Mon, 24 Jun 2024 16:00:20 GMT
- Title: The MRI Scanner as a Diagnostic: Image-less Active Sampling
- Authors: Yuning Du, Rohan Dharmakumar, Sotirios A. Tsaftaris,
- Abstract summary: We propose an ML-based framework that learns an active sampling strategy, via reinforcement learning, at a patient-level to directly infer disease from undersampled k-space.
We validate our approach by inferring Meniscus Tear in undersampled knee MRI data, where we achieve diagnostic performance comparable with ML-based diagnosis.
- Score: 9.964204750574469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the high diagnostic accuracy of Magnetic Resonance Imaging (MRI), using MRI as a Point-of-Care (POC) disease identification tool poses significant accessibility challenges due to the use of high magnetic field strength and lengthy acquisition times. We ask a simple question: Can we dynamically optimise acquired samples, at the patient level, according to an (automated) downstream decision task, while discounting image reconstruction? We propose an ML-based framework that learns an active sampling strategy, via reinforcement learning, at a patient-level to directly infer disease from undersampled k-space. We validate our approach by inferring Meniscus Tear in undersampled knee MRI data, where we achieve diagnostic performance comparable with ML-based diagnosis, using fully sampled k-space data. We analyse task-specific sampling policies, showcasing the adaptability of our active sampling approach. The introduced frugal sampling strategies have the potential to reduce high field strength requirements that in turn strengthen the viability of MRI-based POC disease identification and associated preliminary screening tools.
Related papers
- Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - CL-MRI: Self-Supervised Contrastive Learning to Improve the Accuracy of Undersampled MRI Reconstruction [25.078280843551322]
We introduce a self-supervised pretraining procedure using contrastive learning to improve the accuracy of undersampled MRI reconstruction.
Our experiments demonstrate improved reconstruction accuracy across a range of acceleration factors and datasets.
arXiv Detail & Related papers (2023-06-01T10:29:58Z) - On the Feasibility of Machine Learning Augmented Magnetic Resonance for
Point-of-Care Identification of Disease [16.052314124109223]
Early detection of many life-threatening diseases can improve clinical outcomes and reduce cost of care.
Despite the high accuracy of Magnetic Resonance (MR) imaging in disease diagnosis, it is not used as a Point-of-Care disease identification tool.
We propose a method that performs two tasks: 1) identifies a subset of the k-space that maximizes disease identification accuracy, and 2) infers the disease directly using the identified k-space subset.
arXiv Detail & Related papers (2023-01-27T19:32:27Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - Adaptive PromptNet For Auxiliary Glioma Diagnosis without
Contrast-Enhanced MRI [11.231836756951655]
Multi-contrast magnetic resonance imaging (MRI)-based automatic auxiliary glioma diagnosis plays an important role in the clinic.
Contrast-enhanced MRI sequences (e.g., contrast-enhanced T1-weighted imaging) were utilized in most of the existing relevant studies.
However, acquiring contrast-enhanced MRI data is sometimes not feasible due to the patients physiological limitations.
It is more time-consuming and costly to collect contrast-enhanced MRI data in the clinic.
arXiv Detail & Related papers (2022-11-15T08:02:54Z) - Interpretability Aware Model Training to Improve Robustness against
Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease
Classification [8.050897403457995]
We propose an interpretability aware adversarial training regime to improve robustness against out-of-distribution samples originating from different MRI hardware.
We present preliminary results showing promising performance on out-of-distribution samples.
arXiv Detail & Related papers (2021-11-15T04:42:47Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.