論文の概要: M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
- arxiv url: http://arxiv.org/abs/2406.16783v2
- Date: Fri, 28 Jun 2024 10:14:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 11:00:14.005824
- Title: M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
- Title(参考訳): M2Lingual:大規模言語モデルにおける多言語・多言語インストラクションアライメントの強化
- Authors: Rishabh Maheshwary, Vikas Yadav, Hoang Nguyen, Khyati Mahajan, Sathwik Tejaswi Madhusudhan,
- Abstract要約: 我々は,M2Lingualと呼ばれる多言語多言語命令微調整データセットの完全合成・新規分類法(Evol)を提案する。
最初は多様な種子の例を選択し、次に提案されたEvol分類を用いてこれらの種子を複雑で挑戦的なマルチターン命令に変換することによって構築される。
異なる大きさのLLMを学習し,多種多様な言語に対して性能向上を示すことで,M2Lingualの有効性を実証する。
- 参考スコア(独自算出の注目度): 7.974870091740232
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. While many effective IFT datasets have been introduced recently, they predominantly focus on high-resource languages like English. To better align LLMs across a broad spectrum of languages and tasks, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual. It is constructed by first selecting a diverse set of seed examples and then utilizing the proposed Evol taxonomy to convert these seeds into complex and challenging multi-turn instructions. We demonstrate the effectiveness of M2Lingual by training LLMs of varying sizes and showcasing the enhanced performance across a diverse set of languages. We contribute the 2 step Evol taxonomy with the guided generation code: https://github.com/ServiceNow/M2Lingual, as well as the first fully synthetic, general and task-oriented, multi-turn, multilingual dataset built with Evol - M2Lingual: https://huggingface.co/datasets/ServiceNow-AI/ M2Lingual - containing 182K total IFT pairs, covering 70 languages and 17+ NLP tasks.
- Abstract(参考訳): インストラクション微調整(IFT)は、命令に従うためにLLM(Large Language Models)を調整するために重要である。
近年、多くの効果的なIFTデータセットが導入されているが、主に英語のような高リソース言語に焦点を当てている。
言語やタスクの広い範囲にわたるLLMの整合性を改善するために,M2Lingualと呼ばれる多言語多言語・多言語命令微調整データセットの完全合成型分類法(Evol)を提案する。
最初は多様な種子の例を選択し、次に提案されたEvol分類を用いてこれらの種子を複雑で挑戦的なマルチターン命令に変換することによって構築される。
異なる大きさのLLMを学習し,多種多様な言語に対して性能向上を示すことで,M2Lingualの有効性を実証する。
https://github.com/ServiceNow/M2Lingual と Evol - M2Lingual: https://huggingface.co/datasets/ServiceNow-AI/M2Lingual - 70の言語と17以上のNLPタスクを含む182KのIFTペアを含む最初の完全合成、汎用、タスク指向、マルチターン、マルチリンガルデータセット。
関連論文リスト
- Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following [51.18383180774354]
Multi-IFは,大規模言語モデルの習熟度を多元的および多言語的指示に従って評価するための新しいベンチマークである。
Multi-IF 上での14の最先端 LLM の評価結果から,既存のベンチマークよりもはるかに難しい課題であることが判明した。
非ラテン文字(ヒンディー語、ロシア語、中国語)を持つ言語は一般的に高いエラー率を示し、モデルの多言語能力の潜在的な制限を示唆している。
論文 参考訳(メタデータ) (2024-10-21T00:59:47Z) - Improving Multilingual Instruction Finetuning via Linguistically Natural and Diverse Datasets [38.867815476721894]
ほとんどのインストラクションファインチューニング(IFT)データセットは、主に英語で書かれており、他の言語でのモデルパフォーマンスが制限されている。
多言語IFTデータセットを作成する従来の方法は、言語的ニュアンスを捕捉し、迅速な(指示)多様性を確保するのに苦労している。
本稿では,言語的自然性を維持し,迅速な多様性を保証する多言語IFTデータセットの収集手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T23:47:09Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment [4.571088742209442]
91Kの英語-韓国-中国の多言語・マルチモーダルトレーニングデータセットを作成します。
韓国語と英語の両方で優れた性能を示すバイリンガル・マルチモーダル・モデルを開発した。
論文 参考訳(メタデータ) (2024-03-18T01:14:47Z) - Towards Robust Instruction Tuning on Multimodal Large Language Models [25.506776502317436]
本研究では,マルチモーダルタスクにおいて,INSTRAUGという自動命令拡張手法を導入する。
2つの人気のあるマルチモーダル命令フォローベンチマークの結果、INSTRAUGは12のマルチモーダルタスク間でのMLLM(Multimodal Large Language Model)のアライメントを大幅に改善できることが示された。
論文 参考訳(メタデータ) (2024-02-22T12:35:50Z) - SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models [97.40590590880144]
MLLM(Multimodality Large Language Model)シリーズを開発した。
我々は、言語、ビジョン、視覚言語タスクで利用可能なリソースを網羅した包括的なデータセットを組み立てる。
パラメータサイズや多言語能力の異なるMLLMのスペクトルを得る。
論文 参考訳(メタデータ) (2024-02-08T18:59:48Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
複数の言語を対象としたRLHFに基づく命令調整型LLMシステムであるOkapiを提案する。
オカピは26の多言語言語でインストラクションと応答ランクデータを導入し、将来の多言語LLM研究の促進と開発に役立てている。
論文 参考訳(メタデータ) (2023-07-29T18:01:46Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。