Prompt-based vs. Fine-tuned LLMs Toward Causal Graph Verification
- URL: http://arxiv.org/abs/2406.16899v1
- Date: Wed, 29 May 2024 09:06:18 GMT
- Title: Prompt-based vs. Fine-tuned LLMs Toward Causal Graph Verification
- Authors: Yuni Susanti, Nina Holsmoelle,
- Abstract summary: This work aims toward an application of natural language processing (NLP) technology for automatic verification of causal graphs using text sources.
We compare the performance of two types of NLP models: (1) pre-trained language models fine-tuned for causal relation classification task and, (2) prompt-based LLMs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work aims toward an application of natural language processing (NLP) technology for automatic verification of causal graphs using text sources. A causal graph is often derived from unsupervised causal discovery methods and requires manual evaluation from human experts. NLP technologies, i.e., Large Language Models (LLMs) such as BERT and ChatGPT, can potentially be used to verify the resulted causal graph by predicting if causal relation can be observed between node pairs based on the textual context. In this work, we compare the performance of two types of NLP models: (1) Pre-trained language models fine-tuned for causal relation classification task and, (2) prompt-based LLMs. Contrasted to previous studies where prompt-based LLMs work relatively well over a set of diverse tasks, preliminary experiments on biomedical and open-domain datasets suggest that the fine-tuned models far outperform the prompt-based LLMs, up to 20.5 points improvement of F1 score. We shared the code and the pre-processed datasets in our repository.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study [41.84915013818794]
The Natural Language to Visualization (NL2Vis) task aims to transform natural-language descriptions into visual representations for a grounded table.
Many deep learning-based approaches have been developed for NL2Vis, but challenges persist in visualizing data sourced from unseen databases or spanning multiple tables.
Taking inspiration from the remarkable generation capabilities of Large Language Models (LLMs), this paper conducts an empirical study to evaluate their potential in generating visualizations.
arXiv Detail & Related papers (2024-04-26T03:25:35Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
We evaluate the ability of large language models (LLMs) to infer causal relations from natural language.
LLMs show competitive performance in a benchmark of pairwise relations without needing (explicit) training samples.
We extend our approach to extrapolating causal graphs through iterated pairwise queries.
arXiv Detail & Related papers (2023-12-22T13:14:38Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - MinPrompt: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering [64.6741991162092]
We present MinPrompt, a minimal data augmentation framework for open-domain question answering.
We transform the raw text into a graph structure to build connections between different factual sentences.
We then apply graph algorithms to identify the minimal set of sentences needed to cover the most information in the raw text.
We generate QA pairs based on the identified sentence subset and train the model on the selected sentences to obtain the final model.
arXiv Detail & Related papers (2023-10-08T04:44:36Z) - Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph Generation
from Text [2.396908230113859]
Large language models (LLM) and foundation models with emergent capabilities have been shown to improve the performance of many NLP tasks.
We present Text2KGBench, a benchmark to evaluate the capabilities of language models to generate Knowledge Graphs (KGs) from natural language text guided by an ontology.
arXiv Detail & Related papers (2023-08-04T14:47:15Z) - Stretching Sentence-pair NLI Models to Reason over Long Documents and
Clusters [35.103851212995046]
Natural Language Inference (NLI) has been extensively studied by the NLP community as a framework for estimating the semantic relation between sentence pairs.
We explore the direct zero-shot applicability of NLI models to real applications, beyond the sentence-pair setting they were trained on.
We develop new aggregation methods to allow operating over full documents, reaching state-of-the-art performance on the ContractNLI dataset.
arXiv Detail & Related papers (2022-04-15T12:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.