論文の概要: Deep Survival Analysis from Adult and Pediatric Electrocardiograms: A Multi-center Benchmark Study
- arxiv url: http://arxiv.org/abs/2406.17002v4
- Date: Fri, 12 Sep 2025 15:07:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-15 14:04:02.830779
- Title: Deep Survival Analysis from Adult and Pediatric Electrocardiograms: A Multi-center Benchmark Study
- Title(参考訳): 成人心電図と小児心電図の深部生存解析 : 多施設ベンチマークによる検討
- Authors: Platon Lukyanenko, Joshua Mayourian, Mingxuan Liu, John K. Triedman, Sunil J. Ghelani, William G. La Cava,
- Abstract要約: 心電図(AI-ECG)に応用された人工知能は死亡予測の可能性を示している。
ミナスジェライスのBeth Israel Deaconess(MIMIC-IV)、Telehealth Network of Minas Gerais(Code-15)、Boston Children's Hospital(BCH)の3大コホートにおけるモデル設計選択の評価を行った。
我々は、地平線に基づく分類とディープサバイバル手法を畳み込みネットワークやトランスフォーマーを含むニューラルアーキテクチャと比較し、全原因死亡予測モデルを評価した。
- 参考スコア(独自算出の注目度): 5.554864650304149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence applied to electrocardiography (AI-ECG) shows potential for mortality prediction, but heterogeneous approaches and private datasets have limited generalizable insights. To address this, we systematically evaluated model design choices across three large cohorts: Beth Israel Deaconess (MIMIC-IV: n = 795,546 ECGs, United States), Telehealth Network of Minas Gerais (Code-15: n = 345,779, Brazil), and Boston Children's Hospital (BCH: n = 255,379, United States). We evaluated models predicting all-cause mortality, comparing horizon-based classification and deep survival methods with neural architectures including convolutional networks and transformers, benchmarking against demographic-only and gradient boosting baselines. Top models performed well (median concordance: Code-15, 0.83; MIMIC-IV, 0.78; BCH, 0.81). Incorporating age and sex improved performance across all datasets. Classifier-Cox models showed site-dependent sensitivity to horizon choice (median Pearson's R: Code-15, 0.35; MIMIC-IV, -0.71; BCH, 0.37). External validation reduced concordance, and in some cases demographic-only models outperformed externally trained AI-ECG models on Code-15. However, models trained on multi-site data outperformed site-specific models by 5-22%. Findings highlight factors for robust AI-ECG deployment: deep survival methods outperformed horizon-based classifiers, demographic covariates improved predictive performance, classifier-based models required site-specific calibration, and cross-cohort training, even between adult and pediatric cohorts, substantially improved performance. These results emphasize the importance of model type, demographics, and training diversity in developing AI-ECG models reliably applicable across populations.
- Abstract(参考訳): 心電図(AI-ECG)に応用された人工知能は、死亡予測の可能性を示しているが、異種アプローチとプライベートデータセットは、一般化可能な洞察を限定している。
この問題を解決するために、Beth Israel Deaconess (MIMIC-IV: n = 795,546 ECGs, United States)、Telehealth Network of Minas Gerais (Code-15: n = 345,779, Brazil)、Boston Children's Hospital (BCH: n = 255,379, United States)の3つの大きなコホートでモデルデザインの選択を体系的に評価した。
我々は、全原因死亡予測モデルを評価し、地平線に基づく分類と深層生存法と、畳み込みネットワークやトランスフォーマーを含むニューラルアーキテクチャを比較し、人口統計のみに対するベンチマーク、勾配上昇ベースラインに対するベンチマークを行った。
トップモデルは良好に動作した(中間一致: Code-15, 0.83; MIMIC-IV, 0.78; BCH, 0.81)。
年齢と性別を組み込むことで、すべてのデータセットのパフォーマンスが改善された。
分類器-コックスモデルでは地平線選択に対するサイト依存感度を示した(中間ピアソンのR: Code-15, 0.35; MIMIC-IV, -0.71; BCH, 0.37)。
外部検証は一致を減少させ、場合によっては人口統計のみのモデルは、Code-15で外部訓練されたAI-ECGモデルよりも優れていた。
しかし、マルチサイトデータに基づいてトレーニングされたモデルは、サイト固有のモデルよりも5-22%向上した。
ディープサバイバル手法は地平線に基づく分類器よりも優れており、人口的共変は予測性能を改善し、分類器ベースのモデルはサイト固有の校正を必要とし、成人と小児のコホートの間でもクロスコホートトレーニングを行い、性能を大幅に改善した。
これらの結果は、AI-ECGモデルの開発におけるモデルタイプ、人口統計、トレーニングの多様性の重要性を強調している。
関連論文リスト
- An Automated Classifier of Harmful Brain Activities for Clinical Usage Based on a Vision-Inspired Pre-trained Framework [4.264452248986976]
VIPEEGNetはマサチューセッツ総合病院/ハーバード医科大学から記録された脳波を用いて開発された。
多重分類では、6つのカテゴリに対するVIPEEGNETの感度は36.8%から88.2%である。
論文 参考訳(メタデータ) (2025-07-10T02:22:13Z) - rECGnition_v2.0: Self-Attentive Canonical Fusion of ECG and Patient Data using deep learning for effective Cardiac Diagnostics [0.56337958460022]
この研究は、MIT-BIH Arrhythmia データセットを用いて、様々な不整脈のクラスに対する rECGnition_v2.0 の効率を評価する。
rECGnition_v2.0のコンパクトなアーキテクチャフットプリントは、トレーニング可能なパラメータがより少ないことで特徴付けられ、解釈可能性やスケーラビリティなどいくつかの利点を解き放った。
論文 参考訳(メタデータ) (2025-02-22T15:16:46Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
ターゲットトライアルエミュレーションフレームワーク(CRTRE)を用いた因果ルール生成という新しい手法を提案する。
CRTREは、アソシエーションルールの因果効果を推定するためにランダム化トライアル設計原則を適用している。
次に、病気発症予測などの下流アプリケーションにそのような関連ルールを組み込む。
論文 参考訳(メタデータ) (2024-11-10T02:40:06Z) - rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG [3.0473237906125954]
本稿では,心電図解析と不整脈分類のための新しいマルチモーダル手法を提案する。
提案したrECGnition_v1.0アルゴリズムはクリニックへの展開の道を開く。
論文 参考訳(メタデータ) (2024-10-09T11:17:02Z) - Advanced Predictive Modeling for Enhanced Mortality Prediction in ICU Stroke Patients Using Clinical Data [0.0]
ストロークは成人の障害と死亡の第二の要因である。
毎年1700万人が脳卒中を患っており、約85%が虚血性脳卒中である。
我々は、死亡リスクを評価するためのディープラーニングモデルを開発し、比較のためにいくつかのベースライン機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-07-19T11:17:42Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Analysis of an adaptive lead weighted ResNet for multiclass
classification of 12-lead ECGs [1.155818089388109]
12個の心電図から24個の心の異常を分類するために,アンサンブル深部ニューラルネットワークアーキテクチャを記述,解析した。
5倍のクロスバリデーションスコアが0.684, 感度と特異性は0.758, 0.969であった。
論文 参考訳(メタデータ) (2021-12-01T15:44:52Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Development and Validation of a Deep Learning Model for Prediction of
Severe Outcomes in Suspected COVID-19 Infection [9.524156465126758]
救急外来(ed)に初診した患者の予測結果を伴うトリエイジングは、患者の予後を改善する上で重要である。
我々は、患者の結果を予測するために深い機能融合モデルを訓練した。
モデルアウトプットは、最も非感受性な酸素療法が要求される患者の結果であった。
新型コロナウイルス重篤な結果(CO-RISKスコア)の予測リスクスコアは、モデルアウトプットから導出され、テストデータセットで評価された。
論文 参考訳(メタデータ) (2021-03-21T00:03:27Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Contrastive Learning Improves Critical Event Prediction in COVID-19
Patients [19.419685256069666]
対照的損失 (CL) は非平衡 EHR データに対するクロスエントロピー損失 (CEL) の性能を改善することを示した。
この研究は、シナイ山にあるIcahn School of MedicineのInstitutional Review Boardによって承認されています。
論文 参考訳(メタデータ) (2021-01-11T16:41:13Z) - Clinical prediction system of complications among COVID-19 patients: a
development and validation retrospective multicentre study [0.3569980414613667]
2020年4月1日から4月30日までにUAEのアブダビ(AD)で18施設に入院した3,352人の患者から収集したデータを用いた。
最初の24時間に収集されたデータを用いて、機械学習ベースの予後システムは、入院中に7つの合併症を発生させるリスクを予測する。
このシステムは、すべての合併症と両方の領域にわたって良好な精度を達成する。
論文 参考訳(メタデータ) (2020-11-28T18:16:23Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。