論文の概要: Bayesian temporal biclustering with applications to multi-subject neuroscience studies
- arxiv url: http://arxiv.org/abs/2406.17131v1
- Date: Mon, 24 Jun 2024 20:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:21:22.716909
- Title: Bayesian temporal biclustering with applications to multi-subject neuroscience studies
- Title(参考訳): ベイズ時間的双クラスター化と多目的神経科学研究への応用
- Authors: Federica Zoe Ricci, Erik B. Sudderth, Jaylen Lee, Megan A. K. Peters, Marina Vannucci, Michele Guindani,
- Abstract要約: 本研究では,時間不変な被検体の分割が時間変化による測定の分割を誘導するネスト分割を特徴とする時間的双クラスタリングのためのベイズモデルを提案する。
提案手法は,データ駆動による被検体数および測定クラスター数の決定と,測定分割における変化点数および位置の推定を可能にする。
- 参考スコア(独自算出の注目度): 6.515516311120015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of analyzing multivariate time series collected on multiple subjects, with the goal of identifying groups of subjects exhibiting similar trends in their recorded measurements over time as well as time-varying groups of associated measurements. To this end, we propose a Bayesian model for temporal biclustering featuring nested partitions, where a time-invariant partition of subjects induces a time-varying partition of measurements. Our approach allows for data-driven determination of the number of subject and measurement clusters as well as estimation of the number and location of changepoints in measurement partitions. To efficiently perform model fitting and posterior estimation with Markov Chain Monte Carlo, we derive a blocked update of measurements' cluster-assignment sequences. We illustrate the performance of our model in two applications to functional magnetic resonance imaging data and to an electroencephalogram dataset. The results indicate that the proposed model can combine information from potentially many subjects to discover a set of interpretable, dynamic patterns. Experiments on simulated data compare the estimation performance of the proposed model against ground-truth values and other statistical methods, showing that it performs well at identifying ground-truth subject and measurement clusters even when no subject or time dependence is present.
- Abstract(参考訳): 複数の被験者で収集した多変量時系列を解析することの問題点を考察し、時間とともに記録された測定値に類似した傾向を示す被験者群と、関連する測定値の時間変化群とを同定することを目的とする。
そこで本研究では,時間不変な被検体の分割が時間変動的な測定の分割を誘導する,ネスト分割を特徴とする時間的双クラスタリングのためのベイズモデルを提案する。
提案手法は,データ駆動による被検体数および測定クラスター数の決定と,測定分割における変化点数および位置の推定を可能にする。
マルコフ・チェイン・モンテカルロによるモデルフィッティングと後続推定を効率的に行うため,クラスタ割り当てシーケンスのブロック更新を導出する。
機能的磁気共鳴画像データと脳波データセットに応用した2つのモデルの性能について述べる。
その結果,提案モデルでは,潜在的に多くの被験者からの情報を組み合わせて,解釈可能な動的パターンの集合を見つけることが可能であることが示唆された。
シミュレーションデータを用いた実験は,提案モデルと地中構造値およびその他の統計的手法との比較を行い,対象物や時間依存が存在しない場合でも,地中構造と測定クラスターの同定に有効であることを示した。
関連論文リスト
- A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - Wasserstein multivariate auto-regressive models for modeling distributional time series [0.0]
多変量分布時系列の統計解析のための新しい自己回帰モデルを提案する。
このようなモデルの解の存在、特異性、定常性に関する結果が提供される。
また,本手法を各国の年齢分布から得られたデータ集合に適用した。
論文 参考訳(メタデータ) (2022-07-12T10:18:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Time Series Clustering for Human Behavior Pattern Mining [11.906475748246532]
時系列データから人間の行動をモデル化するための新しいクラスタリング手法を提案する。
頻繁な人間の行動パターンを効果的にマイニングするために、我々は3段階のパイプラインを利用する。
2つの実世界のデータセットとシミュレーションデータセットに関する実証研究は、MTパターンの有効性を実証している。
論文 参考訳(メタデータ) (2021-10-14T17:19:35Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
時系列データは多くの領域で爆発的な速度で成長し、時系列モデリング研究の急増を刺激している。
データ希少性は、膨大なデータ分析の問題で発生する普遍的な問題です。
論文 参考訳(メタデータ) (2021-03-16T22:16:54Z) - Time Adaptive Gaussian Model [0.913755431537592]
我々のモデルは、時間的グラフィカルモデルの推論のための最先端手法の一般化である。
時間内にデータポイントをクラスタリングすることでパターン認識を行い、観察された変数間の確率的(そしておそらく因果関係)関係を見つける。
論文 参考訳(メタデータ) (2021-02-02T00:28:14Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。