論文の概要: Distance Recomputator and Topology Reconstructor for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2406.17281v1
- Date: Tue, 25 Jun 2024 05:12:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 15:41:13.194018
- Title: Distance Recomputator and Topology Reconstructor for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのための距離再計算器と位相再構成器
- Authors: Dong Liu, Meng Jiang,
- Abstract要約: グラフニューラルネットワーク(GNN)の強化を目的とした距離再計算手法とトポロジー再構成手法を導入する。
Distance Recomputatorは動的符号化方式を用いてノード距離を動的に補正し、ノード表現の精度と適応性を向上させる。
トポロジー再構成器は、計算された「類似性距離」に基づいて局所グラフ構造を調整し、学習結果を改善するためにネットワーク構成を最適化する。
- 参考スコア(独自算出の注目度): 22.210886585639063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces novel methodologies, the Distance Recomputator and Topology Reconstructor, aimed at enhancing Graph Neural Networks (GNNs). The Distance Recomputator dynamically recalibrates node distances within k-hop neighborhoods using a dynamic encoding scheme, thereby improving the accuracy and adaptability of node representations. Concurrently, the Topology Reconstructor adjusts local graph structures based on computed "similarity distances," optimizing network configurations for improved learning outcomes. These methods address the limitations of static node representations and fixed aggregation schemes in traditional GNNs, offering a more nuanced approach to modeling complex and dynamic graph topologies. Furthermore, our experimental evaluations demonstrate significant performance advantages over existing methods across various benchmark datasets. The proposed Distance Recomputator and Topology Reconstructor not only enhance node relationship modeling accuracy but also optimize information aggregation efficiency through an asynchronous aggregation mechanism. This approach proves particularly effective in scenarios involving dynamic or large-scale graphs, showcasing the methods' robustness and applicability in real-world graph learning tasks.
- Abstract(参考訳): 本稿では,グラフニューラルネットワーク(GNN)の拡張を目的とした新しい手法である距離再計算器とトポロジー再構成器を紹介する。
距離再計算器は、動的符号化方式を用いてkホップ近傍のノード距離を動的に補正し、ノード表現の精度と適応性を向上させる。
同時に、Topology Reconstructorは、計算された「類似性距離」に基づいて局所グラフ構造を調整し、学習結果を改善するためにネットワーク構成を最適化する。
これらの手法は、従来のGNNにおける静的ノード表現と固定集約スキームの制限に対処し、複雑なグラフトポロジーと動的グラフトポロジーをモデル化するためのよりニュアンスなアプローチを提供する。
さらに, 評価実験により, 各種ベンチマークデータセットにおける既存手法と比較して, 大幅な性能上の優位性を示した。
提案手法は,ノード関係モデリングの精度を高めるだけでなく,非同期アグリゲーション機構による情報集約効率を最適化する。
このアプローチは、動的あるいは大規模グラフを含むシナリオにおいて特に有効であることが証明され、実際のグラフ学習タスクにおけるメソッドの堅牢性と適用性を示す。
関連論文リスト
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-Decomposition) は、生のテキスト属性を分析してグラフ構造を分解する新しいフレームワークである。
我々のフレームワークは、さまざまなデータセットのノード分類性能を大幅に向上させ、ウィスコンシンデータセットでは最大16%の改善を実現した。
論文 参考訳(メタデータ) (2024-05-28T20:54:47Z) - Graph Data Condensation via Self-expressive Graph Structure Reconstruction [7.4525875528900665]
我々は textbfSelf-presentive Graph Structure textbfReconstruction による textbfGraph Data textbfCondensation という新しいフレームワークを紹介した。
提案手法は,元のグラフ構造を凝縮過程に明示的に組み込んで,凝縮ノード間の不規則な相互依存性を捕捉する。
論文 参考訳(メタデータ) (2024-03-12T03:54:25Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
グラフニューラルネットワーク(GNN)は、構造的データ学習のデファクトソリューションである。
既存のグラフ構造学習(GSL)フレームワークには、堅牢性と解釈性がない。
本稿では、構造エントロピーと符号化木に抽象化されたグラフ階層を通して、一般的なGSLフレームワークSE-GSLを提案する。
論文 参考訳(メタデータ) (2023-03-17T05:20:24Z) - Graph Contrastive Learning for Skeleton-based Action Recognition [85.86820157810213]
骨格に基づく行動認識のためのグラフコントラスト学習フレームワークを提案する。
SkeletonGCLは、グラフをクラス識別に強制することで、シーケンス間のグラフ学習を関連付ける。
SkeletonGCLは新しいトレーニングパラダイムを確立し、現在のグラフ畳み込みネットワークにシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2023-01-26T02:09:16Z) - Neighborhood Homophily-based Graph Convolutional Network [4.511171093050241]
グラフニューラルネットワーク(GNN)は、グラフ指向のタスクにおいて強力であることが証明されている。
多くの実世界のグラフは異性を持ち、古典的なGNNのホモフィリーな仮定に挑戦する。
最近の研究では、ホモフィリーを特徴付ける新しい指標を提案するが、提案する指標とモデルの相関を考えることは稀である。
本稿ではまず,ノード近傍におけるラベルの複雑さや純度を測定するため,新しい指標であるNeighborhood Homophily(textitNH)を設計する。
論文 参考訳(メタデータ) (2023-01-24T07:56:44Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。